Archiv der Kategorie: ESP WLAN Modul

In dieser Kategorie finden Sie Informationen und Beispiele zum WLAN Modul ESP8266

Kapazitiver Regensensor mit einem ESP8266 / Arduino

Allgemeines:

Im Internet wird eine Vielzahl von verschiedenen Regensensoren angeboten. Die meisten davon kommen aus Fernost und arbeiten nach dem Resistance Prinzip.

Resistance Regensensor

Trifft ein Regentropfen auf die nicht isolierten Kontakte des Sensors, werden die nebeneinanderliegenden kammförmigen Kontakte durch den Regen verbunden, was letztendlich zu einer Reduzierung des Sensorwiderstandes führt.

Diese Widerstandsänderung ist abhängig vom Verschmutzungsgrad des Regenwassers, sowie der bereits eingetretenen Oxidation des Regensensors.

Über eine Komparator Schaltung kann hierbei meist der Schaltpegel eingestellt werden, bei dem Regen detektiert wird und der dann ein digitales Ausgangssignal setzt.

Manche Sensoren stellen zusätzlich zu diesem Digitalausgang noch ein Analogsignal zur Verfügung, was eine Lösung für eine zeitweilige Kalibrierung des Sensors durch die Software erlauben würde.

Das große Problem bei dieser Messmethode ist es, dass selbst bei Sensoren mit vergoldeten Kontaktoberflächen immer parasitäre Ströme fließen.

Da praktisch immer ein kleiner Gleichstrom an beiden Polen des Sensors anliegt, führt dies unabhängig von der Qualität des Sensors zu einem Elektrochemischen Prozess und damit über kurz oder lang zu einer schrittweisen Zerstörung des Sensors.

Eine bessere Lösung stellt dieser Sensor dar, da er auf einem anderen Prinzip, dem Kapazitiven Prinzip beruht.

Das Funktionsprinzip bei einem Kapazitiven Sensor ist dem oben vorgestellten Messverfahren durchaus ähnlich. Es unterscheitet sich jedoch in einem wesentlichen Punkt, bei Regen wird hier keine leitende Verbindung hergestellt. Durch die Wassertropfen auf der Oberfläche wird lediglich die Kapazität des Sensors verändert, das Wasser wirkt als Dielektrikum.

Der Vorteil bei diesem Lösungsansatz liegt darin, dass keine blanken Leiterbahnoberflächen der Witterung ausgesetzt sind und dadurch auch kein Elektrochemischer Prozess ausgelöst wird, der den Sensor auf dauer ireversiebel beschädigt. Alle leitenden Teile sind durch eine Lackschutzschicht vor Witterungseinflüssen geschützt.

Die Kapazität des Sensors beträgt im trockenen Zustand ca. 170pF. Tritt eine Betauung ein oder trifft Regen auf den Sensor auf, steigt die Kapazität an.
Durch das ermittelte Delta C, lässt sich sogar eine Aussage über die Art des Regens und dessen Intensität treffen.

Ist es z.B. Neblig oder es handelt sich um einen feinen Nieselregen, der die Sensoroberfläche benetzt, bilden sich viele kleine Wasser Tröpfchen auf dem Sensor, was wiederrum zu einem großen Delta C führt.
Bei einem Durchschnittlichen Regen Ereignis sind es vorwiegend größere Tropfen, die zu einem großen Teil sofort wieder abrutschen, so ergibt sich ein kleineres Delta C.

Um schnell festzustellen, wann der Regen wieder zu Ende ist, besitzt der Sensor eine Heizung an der Platinen Unterseite. Diese besteht aus zwanzig 15 Ohm Heizwiderstände, die es bei einer Versorgungsspannung von 5V immerhin auf eine Heizleistung von knapp 1,8 W bringen.
Sie sorgen für eine zügiges verdunsten der Flüssigkeit oder der Eisbildung auf der Sensoroberfläche.

Durch die sehr kleine Bauform des Sensors, kann selbst mit dieser relativ geringen  Leistung ein schnelles  (ca. 5 Minuten) Abtrocknen sichergestellt werden.
Energetisch gesehen ist es sinnvoll, die Sensorheizung nur für die Dauer einer Regenerkennung zu betreiben. Das bedeutet, wird keine Feuchtigkeit oder Regen mehr detektiert, soll die Sensorheizung abgeschaltet werden!
Hierfür ist bereits ein Transistor auf der Platine vorgesehen.
Wird hier ein Mosfet bestückt und ist der Pin für dessen Ansteuerung nicht angeschlossen, muss dieser auf Masse gelegt werden.
Da der Mosfet bei einem offenem Gate in einem Halbleitenden Zustand gehen könnte, was zur einer Zerstörung des Bauteils führen würde.

Bestückung der Platinen Unterseite

Diese Bild zeigt die Bestückung der Unterseite des Sensors. Es ist gut zu erkennen, das im Layout zwar Pats für eine Befestigung der Sensorplatine vorgesehen sind, diese jedoch keine Bohrung besitzen.
Weshalb hier auch kurz auf die Befestigung des Sensors eingegangen werden soll.

Wie zu sehen ist befinden sich die Anschlüsse annähernd mittig auf der Sensorplatine.

Verwandt man z.B. eine feste Wasserdichte Hensel Anschlussdose um die Elektronik darin zu verstauen, genügt es in den Deckel ein passendes rundes Loch zu bohren, damit die Anschlüsse nach innen geleitet werden können. Der Regensensor selbst wird am besten mit Silikon wasserdicht mit dem Deckel verklebt.
Sollten dennoch Befestigungslöcher benötigt werden, so können diese nachträglich ausgebohrt werden.

Es bietet sich an die Platine für die Auswertung mit dem entsprechenden Gegenstück auszustatten, so dass diese von der Innenseite aufgesteckt werden kann.

Die Befestigung dieser Platine kann mit Distanzbolzen, die am Deckel eingeschraubt werden, erfolgen. Werden die Schrauben nicht vom Sensor (mit Silikon) überdeckt werden, sollte hier auf Edelstahlschrauben zurückgegriffen werden.

Im Unteren Bild ist der Schaltplan der Sensorplatine zu sehen.
Bei der Steckverbindung wurde wert daraufgelegt, dass die Signale für alle möglichen Anschlussvarianten an den Pins herausgeführt wurden.

Somit stehen dem Endanwender alle möglichen Verfahren zur Verfügung, die zur Kapazitätsmessung angewandt werden können.

Schaltplan Kapazitiver Regensensor V1.00

Pin Belegung:

  1.  VDD +5V / 3,3V
  2. NC
  3. Sensorheizung
  4. Ladewiderstand
  5. Analog wert (Ladezustand)
  6. Entladewiderstand
  7. GND
  8. GND

Kapazitätsmessung durch Laden- und Samplen der Kondensatorspannung

Source  Code als Anwendungsbeispiel von Matthias Busse
Quellenverweis :
Kapazitäten von 10nF bis 2000uF einfach messen mit dem Arduino

// Kapazität Messgerät 10nF bis 2000uF
//
// Matthias Busse 22.2.2015 Version 1.1

#define messPin 0            // Analog Messeingang
#define ladePin 13           // Kondensator lade Pin über einen 10kOhm Widerstand
#define entladePin 11        // Kondensator entlade Pin über einen 220 Ohm Widerstand 
#define widerstand  9953.0F  // 10 kOhm > gemessen 9,953 kOhm

unsigned long startZeit;
unsigned long vergangeneZeit;
float microFarad;
float nanoFarad;

void setup() {
  pinMode(ladePin, OUTPUT);     // ladePin als Ausgang
  digitalWrite(ladePin, LOW);  
  Serial.begin(9600);           // Serielle Ausgabe
  Serial.println("Kapazitaetsmesser Version 1.1");
}

void loop() {
  // Kondensator laden
  digitalWrite(ladePin, HIGH);            // ladePin auf 5V, das Laden beginnt
  startZeit = micros();                   // Startzeit merken
  while(analogRead(messPin) < 648){}      // 647 ist 63.2% von 1023 (5V) 
  vergangeneZeit= micros() - startZeit - 114; // 0-Messung abziehen (112-116 us)
  if(vergangeneZeit > 4294960000) vergangeneZeit = 0; // Minuswerte auf 0 setzen (ist long deshalb der hohe Wert)
 // Umrechnung: us zu Sekunden ( 10^-6 ) und Farad zu mikroFarad ( 10^6 ),  netto 1  
  microFarad = ((float)vergangeneZeit / widerstand);   
  Serial.print(vergangeneZeit);           // Zeit ausgeben
  Serial.print(" nS    ");         

  if (microFarad > 1){
    if(microFarad < 100) {
      Serial.print(microFarad,2);         // uF.x ausgeben
      Serial.println(" uF     ");
    }
    else {
      Serial.print((long)microFarad);     // uF ausgeben
      Serial.println(" uF     ");
    }
  }
  else {
    nanoFarad = microFarad * 1000.0;     // in nF umrechnen
    if(nanoFarad > 10) {
      Serial.print((long)nanoFarad);     // nF ausgeben
      Serial.println(" nF     ");
      }
    else
      Serial.println("kleiner 10 nF");  
  }

  /* Kondensator entladen */
  digitalWrite(ladePin, LOW);             // ladePin auf 0V 
  pinMode(entladePin, OUTPUT);            // entladePin wird Ausgang 
  digitalWrite(entladePin, LOW);          // entladePin auf 0V 
  while(analogRead(messPin) > 0){}        // bis der Kondensator entladen ist (0V)
  pinMode(entladePin, INPUT);             // entladePin wird Eingang
  
  while((micros() - startZeit) < 500000){}   // bis 500ms warten, d.h. max 2 Ausgaben pro Sekunde
}

Kapazitätsmessung sehr kleiner Kapazitäten

Da bei sehr kleien Kapazitäten die Ladezeit des Kondensators ebenfalls sehr klein wird, müsste beim oben vorgestellten Messverfahren der Ladewiederstand im Verhältnis hierzu entsprechend vergrößert werden, damit mit der Samplingrate des AD-Wandlers im Mikrokontrolers immer noch ein akzeptables Messergebnis erzielt werden könnte.

Das Problem bei einem sehr großen Ladekondensator liegt darin, dass natürlich auch der analoge Eingang des Mikrokontrollers den Kondensator belastet und entläd. Der Messfehler wird also umso größer, je größer der Ladewiderstand wird, bis das System kippt und der Ladewiderstand die benötigte Ladung nicht mehr liefern kann.

Da sich der Regensensor in einem Kapazitätsbereich von 170pF – max. 400 pF bewegt, musste hierfür auf eine anders Messprinzip zurückgegriffen werden.

Das Frequenzmessverfahren

Bei diesem Messverfahren wird keine ADC benötigt, es kommt mit einem Digitaleingang des Mikrokontrollers aus.
Hierfür kommt der hochgenaue Langzeittimer NE555 zum Einsatz.
Dieser Timer seht sowohl in der 5V Variante als NE555 , als auch für Mikrokontroller die nicht 5V tolerant in einer 3V Variante ICM7555 zur Verfügung.

Arbeitet der Mikrokontroller mit 3,3,V und stehen nur ein NE555 zur Verfügung, kann auch ein Spannungsteiler am Ausgang den Levelshift übernehmen.

Der NE555 wird in dieser Schaltung als Multivibrator eingesetzt, der abhängig von angeschlossenen Kondensator seine Ausgangsfrequenz verändert.

Wenn am Ausgang gleiche Ein- und Ausschaltzeiten erzeugt werden sollen, muss die Standardschaltung (siehe oben) mit einer Diode parallel zum Widerstand R2 aufgebaut werden. Andernfalls kann diese Diode einfach entfallen.
Im Programm des Regensensors werden beide Varianten berücksichtigt. Da sowohl die Zeitdauer der negativen als auch der positive Halbwelle gemessen und anschließend addiert werden. Und damit die ganze Periodendauer berechnet wird.

Für die Messung wird vom Regensensor nur der Pin 5 (Analogwert) und Pin 7 (GND) benötigt.
Soll die Heizung genutzt werden kommen noch der Pin 1 (VDD) und Pin 3 (Sensorheizung aktivieren) hinzu.

Die Ein- Zeit berechnet sich wie folgt:
T1= 0,694 * (R1 + R2) * C

Die Aus- Zeit berechnet sich wie folgt:
T2= 0,694 * R2 * C

Die gesamte Periodendauer ist die Summe aus T1 +T2
T = 0,694 * C * (R1 +(2 * R2))
f = 1 / T

Die Frequenz ist 1 / T1 + T2, damit ergibt sich die Ausgangsfrequenz nach folgender Formel:
f = 1 / (0,694 * C * (R1 +2 * R2))

Da bei dieser Anwendung für uns nicht wichtig ist, welche Kapazität der Sensor hat, kann bereits die gemessene Frequenz für eine Regenauswertung verwendet werden.

Der Vollständigkeit halber hier trotzdem noch die kurz die nach C umgestellte Formel:
C =1 / ( f * 0,694 * (R1 + 2 * R2))

Programaufbau für die Kapazitätsmessung des Regensensors

/* Capacitivemeasurement (c) by Dillinger-Engineering 10/2020

   Funktionsweise:
   Um die kleinen Kapazitätsveränderungen des Regensensors (pF-Bereich)
   mit einer hohen Genauigkeit zu messen, wird hier ein NE555/3V verwendet.
   Dieser arbeitet als Multivibrator mit einer Frequenz im KHz Bereich.
   Ändert sich die Messkapazität, ändert (sinkt) auch die
   Frequenz. Je nach Auslegeung der Schaltung kann über die
   Frequenzänderung dann die entsprechende Kapazität errechent werden. 
   Je gröer der Parameter "MeasuringCycleleTime" gewählt wird,
   um so genauer wird auch die Messung. Zu beachten ist dabei jedoch,
   dass sich, sollte ein Sensor Fehler (kein Signal vom Eingang) vorliegt, damit
   auch die Timeoutzeit entsprechnde verlängert !
*/

const byte InputPin = 5;                       // Wemos D1 mini (Pin D1)
const unsigned int MeasuringCycleleTime = 1e6; // 1000000 us
const long R1 = 10000;   //  10 KOhm
const long R2 = 100000;   // 100 KOhm


float GetFrequeny(){  // Ergebnis in Hz
  float fsum = 0.0;
  unsigned int counts = 0;
  double f, T;
  unsigned long SartTtime = micros();
  bool Fail = false;
  do {
    T = pulseIn(InputPin, HIGH, MeasuringCycleleTime) + pulseIn(InputPin, LOW, MeasuringCycleleTime);
    if(T==0){
      Fail = true;
    }
    f=1/T;      
    counts++;    
    fsum += f * 1e6;
  } while(micros() < (SartTtime + MeasuringCycleleTime) && !Fail); // 1 Sekunde mitteln
  if(Fail){
    return(0);
  }else{
    f = fsum / counts * 0.9925;    //Korrekturwert ermitteln und einrechnen
    return(f);
  }
}

float GetCapacity(){  // Ergebnis in pF
  return(1/(GetFrequeny() * 0.694 * (R1 + 2 * R2))* 1e12);
}

void setup() {
  pinMode(InputPin, INPUT);
  Serial.begin(115200);
}

void loop() {
  char CharStr[30];
  
  // Show Data on Serial if available
  sprintf(CharStr,"Capacity: %.3f pf", GetCapacity()); 
  Serial.println(String(CharStr));
  sprintf(CharStr,"Frequenz: %.3f Hz", GetFrequeny()); 
  Serial.println(String(CharStr));
}

 

ESP8266 EEProm richtig verwenden

Grundlagen

Der ESP8266 verfügt je nach Bestückung des verwendeten ESP-Moduls über ein Flash Speicher, der von 1KBit bis zu 16 KBit haben kann.

Beim ESP wird hiervon fester Bereich von 4096 Byte für eine „qasi“ EEProm reserviert, welches vom Programm gelesen und auch beschrieben werden kann. Diese Daten bleiben wie das Programm nach einem neustart erhalten.

Die Größe dies für den EEProm reservierten Bereichs ist in der spi_flash.h unter SPI_FLASH_SEC_SIZE (4096) definiert.

Quelle: www.ullisroboterseite.de
Quelle: www.ullisroboterseite.de

EEproms eignet sich perfekt zum speichern non Daten bzw. von Daten Strukturen, die nach einem Neustart des ESP wieder zur Verfügung stehen sollen.
Da es sich hierbei aber immer noch um eine Flash Ram handelt und diese vom Hersteller mit einer maximalen beschreibbarkeit von ca. 10.000 mal angegeben werden, sollten hier nur Daten gespeichert werden, die keiner häufigen oder gar zyklischen Änderung unterliegen. 

Deshaln eignet sich dieser Speicher auch nicht für Messdaten, für  Konfigurationsdaten, die sich aber nur selten ändern, ist er perfekt.

Verwendung

Die definition erfolgt als Arduino-typischer Klassenkonstruktor mit der Klasse EEPROMClass, diese stellt eine Reihe vordefinierter Funktionen bereit, die für das Handling mit dem EEProm notwendig sind.

Mit „void EEPROMClass::begin(size_t size)“ wird das Objekt zunächst initialisiert.

Dabei wird ein interner Puffer mit Namen _datain der angegeben Größe angelegt.
In diesen Bereich, der nun als EEPROM deklarierte ist, wird nun der Puffer eingelesen.
Alle nachfolgende Lese- bzw. Schreib Operationen in disem Zwischenpuffer.
Dieser Zwischenpuffer wird erst dann in den Flash Speicher übertragen, wenn man dies mit der Methode EEPROM.commit(); anfordert oder das Programm die Operation mit einem EEPROM.end(); abschließt.

Die internen Variablen _dirty vermerkt, ob eine Änderung des Dateninhalts stattgefunden hat. Ein Zurückschreiben des Pufferinhalts erfolg deshalb nur dann, wenn auch eine Änderung stattgefunden hat.

Die Methode getDataPtr() liefert den Zeiger auf den internen Pufferspeicher. Bei einem Aufruf dieser Methode wird _dirty gesetzt, da der Pufferinhalt über diesen Zeiger abgeändert werden könnte.

Der Kalssenaufruf EEPROMClass benötigt beim Konstruktor die Angabe der Speicheradresse (Sektornummer) in EEPROM.cpp, _SPIFFS_end ergibt sich aus der in der IDE festgelegten SPIFFS-Konfiguration.

Die vordefinierte Instanz der Klasse EEPROM wir folgt angelegt:

EEEPROMClass EEPROM((((uint32_t)&_SPIFFS_end - 0x40200000) / SPI_FLASH_SEC_SIZE));

Um z.B. Konfigurationsdaten in Verbindung mit dem EEPROM zu lesen und zu speichern, bietet es sich an die Daten in einer Structur zu verwalten.

 

typedef struct {
  int PHysteresisH1 = 10;          // Fall Back Hysteresis für Relais 
  int PThresholdH1 = 100;          // Schwellwert für Relais 
  int PHysteresisL1 = 10;          // Fall Back Hysteresis für Relais 
  int PThresholdL1 = 50;           // Schwellwert für Relais 
  int PRelaisStateL1 = 0;          // 0- NO / 1- NC
  int PRelaisStateH1 = 0;          // 0- NO / 1- NC
  int PRelaisStateErr = 1;         // 0- NO / 1- NC
  int PSerialOutState = 0;         // 0- OFF / 1- ON
  int PWifiState = 0;              // 0- OFF / 1- ON
  int PMode = 0;                   // 0= relative / 1= Absolut Druck
  int PACMode = 0;                 // 0= keine Autocalibration / 1= Autokalibration
  int PDeltaAC = 10;               // Maximale Abeichung Druckdifferenz 
  int PCalibrationTime = 5000;     // Calibration Counter Time in ms
  unsigned long PHoldTime = 500;   // Für Abfallverzögerung in ms
} PSettings;
PSettings psettings;

Um Speicherplatz zu sparen, sollte der Pufferspeicher nicht größer als notwendig initialisiert werden. Die Maximale Größe beträgt 4096.

Lesen von Daten aus dem Pufferspeicher

EEPROM.begin(1024); // Puffergröße die verwendet werden soll
EEPROM.get(512, psettings); // Anfangsadresse bei der die definierte Structur abgelegt ist
EEPROM.end(); // schließen der EEPROM Operation

Schreiben von Daten in den Pufferspeicher und anschließende Übernahme in den Flash mit commit()

EEPROM.begin(1024);
EEPROM.put(0, settings); //Schreiben einer zweiten Structur ab Adresse 0
EEPROM.commit();
EEPROM.end();

Quellen Verweise:
www.ullisroboterseite.de
www.kriwanek.de

ESP Interrupt Routiene Linkerattribute

Beim der Einbinden von ISR Routienen in den Quellcode des ESP kann es zu einer Fehlermeldung des Compilers kommen.

need to add the ICACHE_RAM_ATTR macro to interrup service routines (ISRs)

Das ICACHE_RAM_ATTR und ICACHE_FLASH_ATTR sind Linkerattribute. Bevor Sie Ihren Programmcode kompilieren, können Sie festlegen, ob die Funktion im RAM oder FLASH gespeichert werden soll (normalerweise legen Sie nichts fest: kein Cache).

Der ESP8266 ist Multitasking und der ESP32 verfügt über 2 Kerne. So können Sie Ihren Code als Multithreading ausführen, da er das RTOS verwendet.

Und jetzt das Problem: Der gesamte Flash wird für das Programm und die Speicherung verwendet. Das Lesen und Schreiben in den Flash kann aber nur über einen Thread erfolgen. Wenn Sie versuchen über 2 verschiedene Threads gleichzeitig auf den Flash zuzugreifen, kann es bei einem Konflikt zu abstürzen Ihres ESP kommen.

Sie können Ihre Funktion anstelle des Flashs, aber auch im RAM ablegen. Selbst wenn Sie etwas in das EEPROM oder den Flash schreiben, kann diese Funktion aufgerufen werden, ohne auf den Flash zuzugreifen.

Mit ICACHE_RAM_ATTR stellen Sie die Funktion in den RAM.
und
mit ICACHE_FLASH_ATTR stellen Sie die Funktion in den FLASH, z.B. um RAM zu sparen.

Interrupt-Funktionen sollten deshalb immer mit dem ICACHE_RAM_ATTR Linkerattribute versehen werden.
Funktionen, die häufig aufgerufen werden, sollten kein Cache-Attribut verwenden.

Wichtig:
Greifen Sie NIEMALS innerhalb eines Interrupts auf Ihren Flash Speicher zu!
Da der Interrupt jeder Zeit während eines Flash-Zugriffs auftreten kann.
Wenn Sie also gleichzeitig versuchen, auf den Flash zuzugreifen, kommt es zu einem Absturz und das kann manchmal auch erst nach einer lägerer Betriebszeit geschehen.

Da Sie nur 32 KB IRAM (Instruction RAM) haben, sollten Sie versuchen, nur Interrupt-Funktionen in den RAM zu stellen.
Nicht alle Ihre Funktionen, auch wenn dies mit Linkerattributen möglich ist.

const uint8_t interruptPin = 14;
volatile byte interruptCounter = 0;
int numberOfInterrupts = 0;
void ICACHE_RAM_ATTR handleInterrupt();

void setup() {

  Serial.begin(9600);
  pinMode(interruptPin, INPUT);
  attachInterrupt(digitalPinToInterrupt(interruptPin), handleInterrupt, CHANGE);

}

void handleInterrupt() {
  interruptCounter++;
}

void loop() {

  if(interruptCounter>0){

      interruptCounter--;
      numberOfInterrupts++;

      Serial.print("An interrupt has occurred. Total: ");
      Serial.println(numberOfInterrupts);
  }

}
// Quelltext by Alfredo Ramirez

 

 

Temperatur geführte WLAN Gewächshausantriebssteuerung

Um in einem Gewächshaus eine ideale Umgebungstemperatur für das gedeihen der Pflanzen zu schaffen, besitzen vielen Gewächshäuser ein Klappfenster, das manuell oder Motorisch betrieben je nach Temperatur geöffnet oder geschlossen werden kann.

Dieses Projekt schafft eine Möglichkeit zur kontinuierlichen Überwachung der Temperatur und der Luftfeuchtigkeit im Gewächshaus.
Diese Daten können über eine WLAN-Verbindung und die APP Blynk ausgewertet werden.
Um auf Temperaturschwankungen reagieren zu können besitzt das Modul zwei potentialfreie Relaisschaltausgänge je für AUF und ZU, über die z.B. ein motorischer Stellantrieb angesteuert werden kann, der die Fensterstellung steuert.

Über die Blynk App ist es möglich, nicht nur die Messdaten zu erfassen und zu speichern, das Modul besitzt einen integrierten Dreipunktregler, der mit entsprechender Parametrierung ein automatisches Verstellen des Antriebs ermöglicht.

Zusätzlich können die Sensordaten des Moduls auch über einen Webserver abgerufen werden, den das Modul ebenfalls zur Verfügung stellt.
Somit ist es möglich, über die Eingabe der IP-Adresse des Moduls im Webbrowser ebenso die aktuellen Sensordaten jederzeit abzurufen.

Das Steuermodul besteht im Wesentlichen aus der Grundplatine mit einem ESP8266 (Wemos D1 mini Pro) / 16MBit Mikrokontroller, der Beschaltung für die Spannungsversorgung und der Kommunikationsschnittstelle. Auf die Interne Antenne wurde verzichtet und stattdessen eine Externe Antenne angebracht, da mit dieser eine bessere WLAN-Empfang und damit eine größere Reichweite möglich ist.

Die Erstellung der Software für den Mikrokontroller erfolgt in der Programmiersprache C, das erstmalige Programmieren bzw. Flashen des Mikrokontrollers wurde über die Arduino IDE realisiert.
Für jede weitere Firmware Aktualisierung steht eine Updatefunktion in der APP bzw. im Web Frontend zur Verfügung, die nach der neusten Firmware auf dem Server der Herstellers sucht und diese ggf. installiert.

Die aktuelle im Modul verwendete Firmware Version wird sowohl in der APP als auch im Web Frontend angezeigt.

Hierbei ist zu beachten, dass auch immer die passende Blynk Applet Version auf dem Smartphone oder Tablett installiert werden muss, da dies ansonsten zu Fehlfunktionen führen kann!

Die Erfassung der Messdaten übernimmt ein Sensor vom Typ DHT 22 der die relative Luftfeuchtigkeit und die Temperatur misst.

Blynk APP „Applet“

Für die Firmware Version V1.00

Technische Beschreibung

WLAN Gewächshausantriebssteuerung Mit Blynk
WLAN Gewächshausantriebssteuerung Mit Blynk
WLAN-Gewu00e4chshausantriebssteuerung-mit-Blynk.pdf
1.1 MiB
201 Downloads
Details

Schaltplan

Schaltplan GewaechshausantriebBlynk
Schaltplan GewaechshausantriebBlynk
GewaechshausantriebBlynk_V100-_SCH.pdf
42.2 KiB
229 Downloads
Details

Sonoff Hack für Alexa von Amazon

Download Arduino Sourcecode von Github

In diesem Projekt wird gezeigt, wie man seinen WIFI Sonoff Switch  der Firma ITEAD direkt und ohne Umwege über eine App oder den ITEAD Server, über seine eigen Amazon Alexa ansteuern kann.

Hierfür sind ein paar kleinere Änderungen an der Hard- und Firmware des Sonoff nötig, die nachfolgend gezeigt werden. Nach dem Umbau bietet der Switch viele neue Möglichkeiten.

  • Konfiguration der WIFI Parameter über ein Captiv Portal.
    Zur Inbetriebnahme des Sonoff startet der Switch im Access Point Modus, hier können anschließend alle Betriebsparameter eingegeben werde, die für den Betrieb im eigenen WLAN und mit Alexa notwendig sind.
  • Wurde der Sonoff an das eigenen WLAN gebracht, kann über ein Web Interface der Schalter bedient und der Timer konfiguriert werden.
  • Zusätzlich kann der Sonoff über das in der Konfiguration definieren Schlüsselwort über Amazon Alexa angesprochen und geschaltet werden.

Allgemeines

Vom Sonoff Switch sind zwei verschiedene Modul Varianten verfügbar. Eine mit und eine ohne RF-Funkmodul.
Wir werden uns hier mit dem Modul ohne RF-Funkmodul beschäftigen, da wir nur das WLAN-Modul fü dieses Projekt benötigen.

Etwas neuer auf dem Markt sind nun auch die Sonoff Schalter Steckdosen mit der Bezeichnung Sonoff S20, hier von habe ich ein paar bestellt. Diese können genau so wie die oben beschreibenen Module mit der geänderten Firmware geflasht werden.

Warum ein Sonoff?

Der Sonoff ist nicht der erste seiner Art, also warum er und nicht ein anderer?
Das angesagte Ziel ist es, selbst die Kontrolle zu behalten. Und nicht auf irgend einen Anbieter angewiesen zu sein.
Im Auslieferungszustand ist bereits eine Firmware auf dem Sonoff vorinstalliert, so kann der Switch direkt von einem Smartphone über die App gesteuert werden.

Den Kern des Sonoff bildet ein WiFi Modul Names ESP8266, der kompatibel mit dem Arduino ist.
Somit kann eine neue Firmware leicht mit der Arduino IDE erstellt und direkt von dort in den Mikrocontroller geladen werden.
ITEAD war sogar so nett und hat alle für die Programmierung benötigten Signale herausgeführt 🙂

Lets hack!

Bevor irgend welche Arbeiten an dem Switch durchgeführt, sei es das öffnen des Gehäuses, ein Hardware Umbau oder das flashen, muss unbedingt die Netzspannung entfernt werden!!!
Es besteht LEBENSGEFAHR!!!

Im ersten Schritt wird der Flash RAM Speicher des Sonoff (1 MBit) gegen einen größeren Speicher 4MBit ausgetauscht. So bleib genügend Platz für weitere neue Innovationen.

Dieses YouTube Video zeigt die Vorgehensweise.

Eine genaue Beschreibung über die Programmierung mit der Arduino IDE und dem Austausch des Speichers finden Sie in diesem Link.

Zugriff für die Programmierung des Sonoff bietet ein Stiftleistenslot auf der Platine, der wie folgt belegt ist.

Wichtig:
Der ESP8266 arbeitet mit einer Betriebsspannung von 3.3V Vergessen deshalb nicht vor dem Anschluß ihres Programmiergerät dies auf 3.3V um zu stellen.

Programmer Sonoff (gezählt vom quadratischen Pin)
3V3 1
TX 2 (RX)
RX 3 (TX)
GND 4
 NC 5

Für die Programmierung halten sie den Taster gedrückt und schalten sie anschließend die Spannungsversorgung 3V3 des Sonoff zu. So startet der ESP8266 im Flash Modus.

Pin Belegung des Sonoff

Funktion GPIO NodeMCU
Button 0 3
Relay 12 6
Green LED 13 7
Spare (pin 5) 14 5

Die LED auf der Platine ist aktuell eine rot/grün bi-color led, bei der aber nur die grüne led verwendet wird. Die rote LED ist für die Variante mit dem RF-Modul geplant und, die in meiner Version aber nicht vorhanden ist

Nach dem flashen der neuen Firmware, was erstmalig über die Serielle Schnittstelle erfolgen muss, ist es dann möglich weitere Firmware Updates OTA in den Sonoff zu übertragen.
In der Arduino IDE sollte nach dem konfigurieren des Switches ein entsprechender Eintrag unter Port zu finden sein.

Dash Button mit Bestellsystem Software

Was ist ein Dash Button?

In diesem Projekt entsteht eine Batterie betriebener WLAN Dash Button in robuster Ausführung.
Die Elektronik soll in einem Gehäuse aus Metall untergebracht werden und eine Schutzart von IP64 erfüllen (Schutz gegen Spritzwasser und Staub).

Ein Dash Button ist eine kleine Mikrocontroller gestützte Schaltung, die bei Anforderung mit einem lokalen WLAN Netzwerk eine Verbindung herstellen kann, um so Daten an einen beliebigen Server zu senden.

Um einen Dash Button in ein bestehendes WLAN Netzwerk zu integrieren, startet der Dash Button im AP-Modus, nach dem Verbinden z.B. mit einem Smartphone oder Laptop, wird automatisch ein Captive Portal auf dem Endgerät geöffnet.

Hier können anschließend folgende Credentials definiert werden:

  • SSID des lokalen WLAN Netzwerks
  • Passwort des lokalen WLAN Netzwerks
  • Hostname des Ziel-Servers
  • URL
  • Dash Token, ein ein-eindeutiger Schlüssel für die Aktion die der Dash Button auslösen soll

Aufbau der Hardware

Der Dash Button soll unabhängig von einer externen Energieversorgung arbeiten können. Das bedeutet, dass die Energieversorgung mit Batterien realisiert wird, die im Gehäuse untergebracht werden.

Prototyp Dash Button von oben
Prototyp Dash Button von unten
Prototyp eines DashButtons im Metallgehäuse, zum Testen der Feldstärke mit einer ext. Antenne.

Deep Sleep Modus

Softwaretechnisch wird hierfür die sogenannte Deepsleep Funktion des Mikrocontrollers verwendet. In diesem Modus hat die Schaltung eine Stromaufnahme <70uA, was eine lange Lebensdauer der Batterien im Standby garantiert.

Nach Herstellerangaben, liegt der Deepsleep Ruhestrom bei ca. 10uA. Gemessen wurde beim Dashbutton jedoch eine Ruhestromaufnahme von ca. 60 uA. Dies muss jedoch noch genauer untersucht werden, da hier eine Messfehlertoleranz des Multimeters anzunehmen ist.

20150112172151.jpg

Eine Standard ESP-07 enthält einen Flash RAM von 1M, für die Programmierung wird ein SPIFFS von 64 K voreingestellt.
Direkt auf dem Modul befinden sich zwei LED’s , die rote LED ist direkt mit der Versorgungsspannung verbunden. Diese LED verursacht auch im Deepsleep Modus einen schadhaften Ruhestrom von ca. 15 mA und muss deshalb entfernt werden.
Die blaue LED ist mit TxD verbunden und zeigt die Aktivität an diesem Pin an.

Änderung des Energieversorgungsskonzeptes

Bei den Tests mit verschiedenen Primärquellen hat sich gezeigt, das mit dem ersten Layoutentwurf immer nur ein relativ kleiner Teil der zu Verfügungstehenden Kapazitäten entnommen werden kann. Deshalb wird nun in einer überarabeitenen Hardware Revision ein StepUp Booster vom Typ   NCP1402SN33T1 eingesetzt.

Dieser Baustein hat eine sehr niedrige Anlaufspannung von ca. 0.8V. Werden zwei AA-Battereien in Reihe betrieben, kann jede Zelle bis zu einer Spannung von 0.4V entladen werden, was knapp 90% der Gesamtkapazität der Zellen entspricht.

Der Baustein hat einen sehr niedrige Standby Stromaufnahme von nur 10uA und er stellt am Ausgang einen konstante Spannung von 3.3V zur Verfügung.

Das Schaltungsdesigne wird auch dahingehend geändert, dass auf den Standbystrom des NCP1402SN33T1 und den Deep Sleep Modus des ESP6288 verzichtet werden kann, da die Summe der beiden Ruhestromaufnahmen dann doch einen beträchtlichen Anteil von ca. 70 uA aus mahen würden.

Zu Einsatz kommt ein Mos Fet Transistor, der gleich zwei Aufgaben erfüllt. Zum einen dient er dem Verpolungsschutz, wenn die Batteriene versehentlich falsch eingelegt wurden und schützt so die Schaltkreise vor der Zerstörung.
Und zum anderen, wird er als Schalter für die Sapannungsversorgung verwendet.

Mit dem Betätigen des Tasters wird der Mos Fet leitend und stellt die Versorgungsspannung des Schaltkreises zur Verfügung. Ms nach dem starten des ESP 8266 steuert dieser dann übereinen Ausgang den Mos Fet an und verhindert so das sie Versorungsspannung nach dem loslassen des Taster wieder abgeschaltet wird.

Sobald alle nötigen Programmaktionen abgearbeitet wurden, gibt der ESP 8266 den Schaltausgang des Mos Fet’s wieder frei und die Spannungsversorgung wird abgeschaltet.

Batterie Kapazität

Die Richtwerte für Alkalien Batterien schwanken lt. Herstellerangaben in folgenden Bereichen:

AAA 1000  - 1500  mAh
AA  2000  - 3000  mAh
D   12000 - 20000 mAh

Eine Duracell Plus soll lt. Herstellers Angaben bis zu 2.9 Ah haben, was einer Laufzeit im Deepsleep Modus von mehreren Jahren entspräche.

Für Batterietests bietet das Layout unter anderem auch die Möglichkeit den Dash Button mit einer Knopfzelle zu betreiben.
Es hat sich jedoch gezeigt, dass eine Standard LR2032 nicht in Frage kommt, da bei diesem Typ bei einer Pulsbelastung die Spannung kurzfristig auf 2,8V einbricht. Was deutlich außerhalb der Spezifizierten Parameter des ESP8266 liegen würde.

Deshalb wurde für den Test eine Lithium Ionen Zelle z.B. Typ LIR 2032 (35mAh) verwendet. Da diese Typen auch bei einer Pulsbelastung in der für den ESP8266 definierten Spezifikation bleibt.
Der Nachteil dieser kleinen Bauform liegt jedoch in der kurzen Standbyzeit,  die bei rund 60 uA Ruhestromaufnahme gerade mal für ca. 25 Tage reicht.

Bei der Verwendung von zwei in Reihe geschalteten AA-Zink Kohle Batterien ist der Arbeitsspannungsbereich für den Betrieb eines ESP8266 sehr eingeschränkt. Bei neuen Batterien liegt die Spannung bei ca. 3,2 V. Nach einer Entladung von ca. 5% liegt die Spannung nur noch bei 3,0V. Somit erscheint der Einsatz solcher Batterietypen als wenig sinnvoll.

Eine weitere denkbare Option wäre der Verwendung von drei in Reihe geschalteten AA-Zellen, um das Spannungsniveau  in einen besseren Auslastungsbereich zu bekommen. Hier bei müsste dann jedoch wieder ein Spannungsregler eingesetzt werden, der zusätzliche Verluste mit sich bringt, was die Lebensdauer aber bei der verhältnismäßig geringen Einschaltzeit kaum einschränken dürfte.

Typische Kennlienie einer Duracell AA Batterie. (Quelle Duracell Datenblatt)

So wird nun im dritten Anlauf für dieses Projekt angenommen, dass entweder zwei paralell geschaltete LiFEPO4 AA Akkus zum Einsatz kommen oder drei AA-Zellen die in Reihe geschaltet werden. Oder die Dritte Option ein LIPO Akku mit einer Ausgangsspannung von 3.7V.

Die Platine erhält einen 3,3 V low drop Spannungsregler der Firma Mikrochip, vom Typ MIC5219-3.3BM5 LG33 3.3V –40°C to +125°C SOT-23-5.

Dieser Baustein besitzt einen Enable Eingang, der es erlaubt die komplette Schaltung abzuschalten ohne das ein merklicher Ruhestrom fließt.

Durch den Einsatz dieses Reglers kann ein ein Eingangsspannungsbereiche zwischen 3 – 5v abgedeckt werden. Darurch sind alle drei Varianten der oben beschriebenen Spannungsversorgungen möglich.

LiFEPO4 AA Akkus liefern eine Spannung von 3,4 V / 700 mA, was einer Batteriekapazität von 100% entspräche.
Durch eine Parallelschaltung von zwei LiFePO4 Akkus kann somit die Kapazität auf 1400 mAh erhöht werden.

Hierbei läge die Ausnützung der Batteriekapazität bei etwa 60% (800 mAh), im Vergleich zu drei Zink-Kohle Batteriene. Deren Entladeschlussspannung bei 1v liegt, was bei drei in reihe geschaltenenen Zellen ca. 3V entspricht  = minimale Eingangsspannung der EPS lt. Spec.

Es ergäbe sich rein rechnerisch eine Standbybetriebszeit von ca. 1,5 Jahren.

Ein großer Vorteil bei der Verwendung von LiFePO4 Zellen liegt darin, dass die Zellen wiederaufladbar sind und somit viele Male wieder verwendet werden können.
Ein gravierender Nachteil der Parallelschaltung von zwei Zellen liegt jedoch in einer Verpolung.
Wenn die Zellen von nicht fachkundigem Personal gewechselt werden sollen,  kann es durch die Parallelschaltung der beiden Zellen bei einem falschen Einlegen zu einem Kurzschluss kommen, der dann zur thermischen Zerstörung der Akkus und letztendlich des Dashbuttons führen würde.

Endladekennlinie einer LiFePO4 Zelle. (Quelle https://evtv.wordpress.com/2010/04/21/april-16-friday-show/)

Um eine lange Lebensdauer von Akkus zu gewährleisten, sind diese unbedingt vor einer Tiefentladung  zu schützen. Deshalb ist in der Firmware des DashButtons ein Schwellwert von 2,9 V programmiert, ab dem sich der Dash Button nicht mehr starten lässt. Die LED geht kurz an, blinkt für 1 Sekunde sehr schnell und geht dann sofort wieder aus!

Laut Herstellerangaben darf sich die Betriebsspannung eines ESP 8266 in einem Bereich von 3,0V – 3,6V bewegen (Typisch 3,3V).
Somit entspräche eine Batteriespannung von 3,0V gleich 0% Batteriekapazität, was einen sofortigen Batteriewechsel nötig machen würde!

Server Software

Die Server Software bietet die Möglichkeit, neben den Nutzinformation (Token) auch Informationen zur aktuellen Batteriespannung, Hard- und Software Version  und eine Statusinformation des DashButtons zu liefern.

Die Betriebsspannung wird mit dem Parameter &vbatt=x.xxx an den Server übergeben.
Er gibt die Batteriespannung in Volt an.

Beispielberechnung für die Batteriekapazität:

Bei Betrieb mit einer Li Fe PO4 Zelle , wird am Messeingang des Mikrocontrollers etwa eine  Betriebsspannung von 3,3V erreicht.
Was in diesem Fall einer prozentualen Batteriekapazität von 100 % entspräche.
Die minimale Betriebsspannung sollte 3,0V nicht unterschreiten, was somit die 0% der Batteriekapazität fest legt.

Im folgenden Beispiel wird angenommen, dass die Batterie noch eine Spannung von 3,15V (50%) liefert:

Y = Eingangsspannung 3,15V
Y0= 3,0 V
Y100= 3,3 V

X= Ergebnis in %
X0 = 0 %
X100 = 100%

X:= ((X100 – X0) * ( Y – Y0 )  /  (Y100 – Y0)) + X0;

        100 * 0.1
Y = ————-  + 0 = 50%
               0.2

Wird der Parameter nicht übergeben, wird der Wert im Server automatisch auf -1 gesetzt. Was soviel bedeutet, dass der Batteriestatus nicht ermittelt werden konnte bzw. nicht bekannt ist.

In der Server Software kann für jeden DashButton der verwendete Batterietyp ausgewählt werden. Somit kann die Berechnung der Batteriekapazität anhand einer hinterlegten Herstellerkennlinie erfolgen, was eine genauere Anzeige der tatsächlichen Kapazität ermöglicht.

Mit diesen Informationen kann in der Serverapplikation ein Mechanismus angestoßen werden, der den Admin rechtzeitig darüber informiert, wann ein Batteriewechsel erforderlich wird.

Das Layout bietet die Möglichkeit, verschieden Batterietypen in verschiedenen Leistungsklassen und Größen zu verwenden.

Externe Antenne

Um eine stabile Funkverbindung etablieren zu können, muss bei der Verwendung eines Metall- bzw. metallisierten Gehäuses eine externe Antenne verwendet werden!

Bei einem Standard ESP-07 Modulen ist bereits ein Anschluss für eine externe Antenne vorhanden. Wird der externe Antennenanschluss verwendet, muss die Verbindung zur internen (aufgelöteten) Antenne unterbrochen werden. Hierfür ist der Null Ohm Wiederstand neben dem Antennenanschluss zu entfernen.

Für die Verwendung einer externen Antenne muss der null Ohm Wiederstand (rotes Quadrat) entfernt werden. Wird das ESP07 Modul mit einer Batterie betrieben muss zusätzlich die Power LED (roter Kreis) entfernt werden, um ein unnötiges entladen der Batterie zu vermeiden.

 

Wurde die interne Antenne entfernt,ist zwingend darauf zu achten, dass das Modul nicht ohne eine angeschlossene externe Antenne betrieben wird. Da dies zur Zerstörung des ESP-Moduls führen kann.

Programmierung

Die Programmierung des Mikrocontrollers erfolgt über einen Programmieranschluss, der auf der Platine vorhanden ist.
Diese Schnittstelle ist notwendig, um erstmalig eine Firmware in den Mikrocontroller laden zu können.

Hierbei ist zu beachten, dass die Lötbrücke J1 die im Bild mit einem Stern gekennzeichnet ist, nicht geschlossen sein darf. Da im Auslieferungsstand der Pin GPIO16 auf low liegt und somit eine Dauer Reset anliegen würde.

Im Programm darf somit der GPIO16 nicht mit pinMode() konfiguriert werden.

Lötbrücke für ein optionales automatisches aktivieren des DashButton nach einer fest definierten Zeitspanne. Sie verbindet den Pin GPIO16 mit dem Eingang RESET.

Funktionsweise des Tasters und der LED

Das Layout bietet je nach Bestückung die Möglichkeit einen Taster und eine LED in SMD Technik oder aber auch bedrahteten Bauelemente zu verwenden. Somit ist es auch möglich andere Bedientasten z.B. mit Kabelanschlüssen ein zu löten.

Befindet sich das Modul im Deepsleep Modus, kann es durch einen Tastendruck aufgeweckt werden.

Je nachdem wie lange der Taster  gedrückt gehalten wir, werden unterschiedliche Funktionen aufgerufen:

  • Drücken bis eine Verbindung ausgebaut wurde  – Test Modus (Status 0).
  • Drücken über einen Zeitraum von 10 Sekunden – WIFI Setup (Status 1).
  • kurzes Drücken des Tasters – löst eine Bestellung aus (Status 2).

Anschließend versucht das Gerät eine Netzwerkverbindung zum lokalen AP zu etablieren, was durch ein langsames blinken der LED signalisiert wird.
Kann keine Verbindung hergestellt werden, beginnt die LED schnell zu blinken und man hat die Möglichkeit für 240 Sekunden eine Verbindung zu diesem Dash Button aufzubauen und die Konfiguration vor zu nehmen.
Erfolgt in dieser Zeit kein Login auf dem Dash Button, wird der Mikrocontroller wieder in den Deepsleep Modus versetzt, um die Batterie nicht unnötig zu strapazieren.

Ist der Verbindungsaufbau zum lokalen WLAN geglückt, wird die Nutzinformation (Dash Token) an den in den Credentials definierten Server verschickt.
Wurde der Empfang der Information vom Server bestätigt, leuchtet die Status LED für drei Sekunden kontinuierlich.
Wird der Empfangs nicht vom Server bestätigt, wird dies durch schnelles Blinken der LED für drei Sekunden angezeigt.
Anschließend wechselt der Mikrocontroller wider in den Deepsleep Modus.

Je nachdem welches Ereignis am Dashbutton ausgelöst wurde, wird eine entsprechende Statusinformation im Parameter &status=x dem HTTP Put Request übergeben. Wird der Parameter nicht mit übergeben, wird der Wert im Server automatisch auf -1 gesetzt, was soviel bedeutet das der Status nicht bekannt ist.

Server Applikation für den DashButton
DashButtonServer
DashButtonServer
DashButtonServer.zip
Version: V 1.0.0.0
7.9 MiB
398 Downloads
Details

Die Serverapplikation kann auch direkt mit dem Webbrowser getestet werden. Hierfür wird in die Adresszeile der folgende Aufruf eingegeben:

http://HOST
/URL?&token=ef98c8246ef0409da5fb3a27afa4ec61
&vbatt=3.12&hv=1.00&sv=1.03&status=1

  • Host:
    Ist die IP-Adresse des Servers z.B. 192.168.1.123
  • URL:
    Ist eine Pfadangabe (optional für den augenblicklichen Stand) soll später der Einordnung der Einträge dienen, z.B. für die Standorte.
  • token:
    Ist ein 32 stelliger ein eindeutiger Schlüssel des betreffenden Dash Buttons.
  • vbatt:
    Gibt die Batteriespannung in Volt an.
  • hv:
    Gibt die aktuelle Hardware Revision des DashButton an.
  • sv:
    Gibt die aktuelle Firmware Version des DashButton an.
  • status:
    Information über den Auslöser des Ereignisses.
    0 – Test (Button wurde kürzer als drei Sekunden gedrückt)
    1 – Settings (Die Einstellungen wurden aufgerufen, durch langes drücken des Tasters)
    2 – Order (Ein Bestellauftrag wurde abgesetzt)
    3 – n Für weitere Statusinformationen reserviert
Weitere Ideen:
  • Der Dash Token sollte im Prinzip ein 32 Byte Hashcode sein, der einen Prüfsumme oder einen CRC Check enthält, um die Authentizität des Tokens auf dem Server verifizieren zu können.
  • Es wäre denkbar, dass sich ein Dash Button der längere Zeit nicht betätigt wurde, automatisch aktiviert (z.B. alle 24h) und seinen Batteriestatus an den Server sendet.
    Der Parameter „status“ würde das Ereignis dann als Test identifizieren.
    Hierbei wäre zu bedenken, dass ein zyklisches Verbinden mit dem WLAN und das Senden dieser Statusinformationen die Batterielebensdauer zusätzlich verkürzen würde.

Einen eigenen lokalen Blynk Server auf dem Raspberry PI installieren

Logen Sie sich auf ihrer Raspberry z.B. per ssh ein.

Nun wird die aktuelle Java Version (Java 8) installiert :

sudo apt-get install oracle-java8-jdk

Stellen Sie sicher, dass nun die aktuelle Java Version installiert wurde.

java -version
Output: java version "1.8.0_40"

Download des Blynkserver jar Files in das „/home/pi/Blynk Verzeichnis.
Sollte das Verzeichnis noch nicht existiert muss es zuerst angelegt werden.

Alle folgenden „sudo“ Anweisungen kann man sich sparen, wenn man gleich in den „sudo bash“ wechselt, dies ist vergleichbar mit dem „su“ bei anderen Linux Distributionen.

pwd
/home/pi/
sudo mkdir Blynk
cd Blynk
sudo wget "https://github.com/blynkkk/blynk-server/releases/download/v0.39.10/server-0.39.10.jar"

Es ist auch möglich,  die Server Datei manuell via ssh oder scp herunter zuladen und in das entsprechende Verzeichnis hinein zu kopieren .

Um den Mailversand zu aktivieren, muss im Verzeichnis /home/pi/Blynk eine Datei mit dem Namen mail.properties angelegt werden.

Der Inhalt dieser Datei hat folgendes Format.

mail.smtp.auth=true
mail.smtp.starttls.enable=true
mail.smtp.host=smtp.gmail.com
mail.smtp.port=587
mail.smtp.username=Anmeldename
mail.smtp.password=Kennwort

Die aktuelle Blynk Server Version ist unter:
https://github.com/blynkkk/blynk-server/releases
zu finden.

  • Server mit den default Einstellungen starten (Hardware Port 9443 SSL)
    sudo java -jar server-0.39.10.jar -dataFolder /home/pi/Blynk        
    
  • Als Rückmeldung des Servers erscheint eine Meldung wie diese :
    Blynk Server successfully started.
    All server output is stored in current folder in 'logs/blynk.log' file.
    

Aktiviere automatischen Server Neustart

Um diese Option zu aktivieren, suchen Sie das Verzeichnis:
/etc/init.d/rc.local
öffnen sie die Datei mit dem vi Editor und fügen sie die folgende Zeile hinzu:

sudo vi rc.local
java -jar /home/pi/Blynk/server-0.39.10.jar -dataFolder /home/pi/Blynk &

Sollte dieser Ansatz nicht funktionieren, versuche Sie bitte folgendes:

sudo crontab -e

und fügen sie die folgenden Zeilen hinzu

    @reboot java -jar /home/pi/server-0.39.10.jar -dataFolder /home/pi/Blynk &

anschließend speichern und beenden.

Der Administrationsbereich kann anschließend bei laufendem Blynk Server mit folgender URL im Browser geöffnet werden.

https://your_ip|(127.0.0.1):9443/admin

Um den Blynkserver im Lokalen Netzwerk auch über das Internet erreichen zu können wird der Einsatz einer DynDNS Adresse empfohlen. Diese kann dann z.B. in einer Fritzbox hinterlegt werden, ändert sich die IP-Adresse der Fritzbox (alle 24 Stunden veranlaßt durch den Provider), wird automatisch die DynDNS Adresse informiert und der Server ist somit immer mit einem Pseudo Domain Name erreichbar.
In lokalen Router müssen außerdem noch ein paar Portfreigaben definiert werden. EIn Auszug der wichtigsten Einstellungen ist hier zu sehen.

 

Viele weitere Informationen zur Konfiguration der Blynk Servers.