Schlagwort-Archive: iot

IOT – Wetterstation

Allgemeines

Für die Erfassung und Verteilung aktueller lokaler Wetterdaten wurde im Zuge eines Kundenauftrags diese IoT-Wetterstation mit integrierter Ethernet Schnittstelle auf Basis eines ESP32 entwickelt.

Alternativ kann auch auf die Anbindung über die Ethernet Schnittstelle verzichtet werden und die Daten könnten stattdessen per WLAN Verbindung über den Mikrokontroller ESP32 versendet werden.

Sie erfasst die folgenden Wetterdaten und sendet diese zyklisch per UDP-Broadcast über den Port 8888 in das lokale Netzwerk. Auch hier wäre der Versand per MQTT an einen Broker denkbar.

Wetterdaten:
  • Aktuelle Windgeschwindigkeit
  • Aktuelle Windrichtung (0 – 360 °)
  • Windrichtungswert als Windrichtungsindex
  • Aktuelle Außen- und Modultemperatur
  • Aktuelle Daten vom Kapazitiven Regensensor
  • Aktuellen LUX Wert, RAW Index und den Weiß Wert.
  • Regen Bit der Regenerkennung
  • Dämmerungsbit der Dämmerungserkennung
  • Windmax Bit der Windmax. Erkennung

Hardwareaufbau

Die Platine der Wetterstation hat eine Abmessung von 80 x 120 mm.
Sie besitzt Schraubklemmen zum Verbinden der Eingangssignale und eine RJ45 Buchse zum Anschluss der Netzwerkverbindung über Ethernet, unten rechts im Bild.

IoT-Wetterstation Platine
IoT-Wetterstation Lux- und Kapazitiver Regensensor

Die Platine der verfügt über folgende Anschlüsse:

  • Einen Programmieranschluss für Firmware Updates
  • Einen RJ45 Netzwerkanschluss
  • Schraubanschlüsse für die Sensoren

Die ersten beiden Klemmanschlüsse dienen dem Anschluss der Versorgungsspannung, diese kann in einem Bereich von 7 – 27 V= liegen.

Der nächste Anschluss wurde für einen potentialfreien Eingangskontakt vorgesehen, an den z.B. ein Regenmengenmesser mit Read Kontakt angeschlossen werden könnte (optional).

Der nächste Klemmenblock stellen zwei stabilisierte Ausgangsspannung 3.3V und 5.0 V zur Verfügung. Hiermit können Beispielsweise externe Sensoren mit Spannung versorgt werden. Die nächsten beiden Klemmen GND und 1-Wire dienen zum Anschluss von externen 1-Wire Sensoren. In diesem Projekt wird hierrüber Außentemperatur mit einem 1-Wire Sensors vom Typ DS18B20 gemessen.

Die Letzten Klemmen sind Anschlussklemmen für zwei analogen Eingangskanäle. Diese könne je nach Bedarf wahlweise 0 – 10 V oder 0 – 20 mA Eingangssignale verarbeiten.

Am ersten Analogeingang U-in1 und GND kann z.B. der Sensor zur Messung der Windgeschwindigkeit und am zweiten Analogeingang U-in2 und GND der Sensor für die Windrichtung angeschlossen werden.

Eine Kalibration der Messbereiche für die beiden Analogeneingänge U-in / I-in, erfolgt für jeden Kanal getrennt, mit je zwei Spindelpotentiometer.

Hierbei wird zuerst der Spannungseingang abgeglichen und das entsprechende Spindelpotentiometer zunächst gegen den Uhrzeiger auf seine linke Endposition gestellt.

Nach dem Anlegen einer Spannung von 10.0 V wird das Spindelpotentiometer solange verstellt, bis am entsprechenden Ausgangspin, Kanal 1 = Pin1 und Kanal 2 = Pin 7, des LM358 eine Ausgangsspannung von 3.0 V gemessen wird.

Anschließend wird der Spannungseingang getrennt und derselbe Vorgang mit dem Stromeingang durchgeführt. So können beide Eingangskanäle auf ihren Endbereich kalibriert werden.

Kanal 1:

  1. I – Abgleich 3.0V = 20 mA, CH1 Pin1 am LM358M
  2. U – Abgleich 3.0V = 10 V, CH1 Pin1 am LM358M

Kanal 2:

  1. I – Abgleich 3.0V = 20 mA, CH2 Pin 7 am LM358M
  2. U – Abgleich 3.0V = 10 V, CH2 Pin 7 am LM358M

Alle Eingänge der Wetterstation sind gegen ESD geschützt, Die beiden Analogeingänge haben zusätzlich noch einen Verpolungsschutz und eine Einganswert Limitierung um bei einem zu hohen Spannungs- bzw. Stromwerts am Eingang den Mikrokontroller nicht zu zerstören.

Der Regensensor basiert auf einer Kapazitätsmessung.

Siehe hierzu:
Kapazitiver Regensensor mit einem ESP8266 / Arduino

Die ermittelte Kapazität wird über einen NE555 in ein digitales Frequenzsignal gewandelt und an den Mikrokontroller weitergeleitet, der dann die Berechnung und Auswertung übernimmt.

Es sind zwei Temperaturmessung vorhanden, die über den 1-Wire Bus erfasst und ausgewertet werden. Als Sensoren werden DS18B20 eingesetzt, der erste befindet sich direkt auf der Platine als TO-3 und dient zur Ermittlung der Gehäuseinnentemperatur, der zweite Sensor ist ein Wasserdichter Edelstahlsensor der in drei Leiter Technik über die Klemmen des 1-Wire Eingangs angeschlossen ist und die Außentemperatur misst.

Zur Erfassung des LUX, RAW und Weißwerts wurde eine VEML7700 des Hersteller Vishay verbaut. Dieser ist über eine I2C Schnittstelle an den Mikrokontroller angebunden und kann mit einer entsprechenden Parametrierung Lux Werte bis zu 150 Klx genau messen.

Das Herzstück der Schaltung ist ein ESP32 Mikrokontroller mit 4 MB Flashspeicher der Firma Espressif. Dieser Kontroller verfügt über ein WLAN und Bluetooth Radio, das jedoch in diesem Projekt nicht zum Einsatz kommt, da der Datenaustausch über Ethernet erfolgt.

Als Schnittstelle zum Ethernet ist ein USR-ES01 Modul mit W5500 Chipsatz vorhanden, die Anbindung an den Mikrokontroller erfolgt per SPI-Bus.

Die Spannungsversorgung für die Wetterstation könnte z.B. auch direkt über das Netzwerkkabel, per Power Over Ethernet kurz PoE erfolgen. Hierfür könnte ein PoE-Splitter, der eine stabilisierte Gleichspannung von 12V aus dem Signalkabel ausschleust, in das Gehäuse der Wetterstation eingebracht werden. Auf diese Weise könnte dann auch die Spannungsversorgung für den Wind- und Windrichtungssensor erfolgen.

Firmware Update

Um ein neues Firmware Update in den ESP32 Mikrokontroller zu laden, verfügt die Platine über einen zweireihigen, acht poligen Steckverbinder, an den der passende USB-Programmieradapter angesteckt werden kann, um eine neue Firmware in den Mikrokontroller der Wetterstation zu übertragen.

Bei einer Verbindung per WLAN, könnte ein Update aber auch per OTA (Over the air) erfolgen. Diese Option seht leider bei einer Anbindung per Ethernet nicht zur Verfügung.

Der USB-Programmieradapter muss dabei so aufgesteckt werden, dass er von der Grundplatine weg zeigt. Ein Vertauschen oder falsches aufstecken führt zur sofortigen Zerstörung der Wetterstation!

Das Herunterladen einer neuen Firmware darf deshalb nur von einer entsprechend eingewiesenen Person oder einem Fachmann durchgeführt werden!

Für den Programmiervorgang muss die Spannungsversorgung zur Wetterstation unterbrochen sein und die Netzwerkverbindung getrennt werden! Des Weiteren kann es beim Flashvorgang zu Problemen kommen, wenn an den analogen Eingangskanälen noch Sensoren angeklemmt sind. Deshalb wird auch hier empfohlen dies vor dem Flashvorgang zu entfernen!

Pressure Sensor

Beschreibung Pressure Sensor
Beschreibung Pressure Sensor
Pressure-Sensor.pdf
Version: V1.01
1.3 MiB
4 Downloads
Details

Allgemeines

Die hier beschriebene Druckmessung entstand aus dem Projekt Timekeeper, dass auf Anfrage für eine Zeitmessung zu Trainingszwecke für eine Gleichmäßigkeitsprüfung durchgeführt wurde.
Als der Timekeeper beim Auftraggeber im Einsatz war, stellte sich heraus, dass das justieren der Lichtschranken gerade bei Sonnenschein eine mühselige Unterfangen darstellt.

Außerdem hängt die Genauigkeit der Erfassung hierbei auch immer von der Justierung der Lichtschranken ab. Da je nach Höhe und Winkel der Start- und Ziellichtschranke, diese bei verschieden Fahrzeugen unterschiedlich ausgelöst werden können. Diese Fehler bewegen sich zwar meist nur in Millisekunden Bereichen, können aber durchaus die Wertungsergebnisse beeinflussen.

So wurde die Idee geboren, einen alternative Messmethode zu testen. Es sollte eine Druckschlauchmessung aufgebaut werden, die quer über die Fahrbahn gelegt werden kann, umso eine Messmethode zu erhalten, die direkt an den Rädern des Fahrzeugs misst. Also Unabhängig von der Form und Bauart der Karosserie.

Es wurde ein PVC-Schlauch, der an einem Ende geschlossen war, an eine Handelsübliche Druckmessung angeschlossen und der Potentialfreie Ausgangskontakt mit dem entsprechenden Initiator Eingang des Timekeeper Moduls verbunden.

Die ersten Tests lieferten bereits sehr viel versprechend Ergebnisse und bewiesen, dass der grundsätzliche Testaufbau funktionierte.

Nach dem die ersten Erfahrungen mit verschiedene Schlauchmaterialien, Druckaufnehmer und den in der Praxis auftretenden Störeinflüssen gesammelt wurden. War schnell klar, dass eine handelsübliche Druckmessung die Anforderungen an diese Aufgabe nur bedingt erfüllen kann.

Der Nachteil eines solchen Messverfahrens ist eine vergleichsweise ungenaue Messung, da die Kunststoffschläuche ein gewisses Eigenleben haben, das zum Beispiel zu temperaturabhängigen Kriecheffekten und Offsetproblemen führt.

Es musste also eine speziell auf diese Art der Anwendung zuggeschnittene Lösung entwickelt werden.

Spezielle Funktion für die Schlauchdruckmessung

Das Hauptproblem stellt nicht die Messung an sich dar, sondern die Umgebungsbedingungen. Den der Druck im inneren des Schlauches ist natürlich in erster Linie abhängig von der Umgebungstemperatur.

Stellen wir uns folgendes vor, der Messaufbau wird am frühen Morgen installiert und getestet. Die Auslöseschwelle beim Überfahren des Schlauchs wird auf ein optimales Auslöseverhalten für die Art und Länge des Schlauchs programmiert.

Der Tag beginnt mit einem relativ kühlen Vormittag, entwickelt sich aber gegen die Mittagszeit zu einem sehr sonnigen Tag.
Am Nachmittag entstehen am Himmel größere vorbeiziehende Wolkenfelder.

So könnte ein normaler Sommer Tag aussehen … was passiert aber nun mit dem Druck im Sensorschlauch?

In der Früh wurde die Messung kalibriert und optimal eingestellt.
Am Vormittag steigt der Druck im Schlauchsensor jedoch stetig an. Im Extremfall sogar bis über die programmierte Auslöseschwelle.

Am Nachmittag wechselt der Druck im Schlauch im Verhältnis der vorbeiziehenden Wolkenfelder hin und her.
All dies hat Einfluss auf das Auslöseverhalten und die Genauigkeit der Messung und kann sogar zu Fehlauslösungen führen.

Genau für diesen Anwendungsfall wurde eine spezielle Zusatzfunktion in diese Druckmessung integriert.

Diese überwacht ständig den Druck im Sensorschlauch, steigt bzw. fällt der Druck (Delta P) über- oder unter einen programmierbaren Schwellwert und bleibt für eine definierbare Zeit (t) außerhalb der definierten Grenze, wird eine (AC) automatische Nullpunkt Kalibration des Relativdruckwertes durchgeführt.

Aufgabenstellung:

Es sollte eine Druckmessung mit einem weiten Eingangsspannungsbereich von 8 – 27V entwickelt werden.
Damit ein Betrieb mit einem Bleiakku (12V KFZ-Batterie), einem externen Netzteil oder eine direkte Versorgung aus dem Timekeeper Modul möglich ist. Dieser wird üblicherweise mit 24V gespeist.

Die Konfiguration der Modulparameter sollte direkt am Pressure Sensor Modul möglich sein. Für die Anzeige sollte ein kleines OLED-Display für die Anzeige der Messwerte und der Menüfunktionen vorhanden sein. Die Bedienung erfolgt dabei über einen Drehwahlschalter bzw. alternativ über einen Taster, der die Navigation und Auswahl der Menü Punkte erlaubt.

Das Modul sollte über drei konfigurierbare, potentialfreie Ausgangskontakte verfügen. Welche das Über- und Unterschreiten einer einstellbaren Druckschwelle, sowie einen Sensorfehler ausgeben können. Für jedes dieser drei Relais kann die Ruhelage NO (normally open) oder NC (normally closed) separat festgelegt werden.

Optional zur Werte- und Fehleranzeige am Sensor Modul, sollten diese Informationen auch über die Blynk App und ein Web Interface zugänglich sein.

Über die integrierte Micro USB-Schnittstelle sollen nach Aktivierung dieser Funktion im Menu, die Messwerte sowie die Statusmeldungen im Textformat ausgegeben werden. Damit diese für eine externe Weiterverarbeitung genutzt werden können.

Bei der Entwicklung der Messung sollte Wert daraufgelegt werden, dass diese sehr vielseitig, auch für beliebige andere Druckmessaufgabe eingesetzt werden kann.
Es sollen zwei verschiedene Messarten möglich sein, Messung des Absoluten Drucks sowie die Messung des Relativen Drucks.

Die Messung des Relativen Drucks sollte auch manuell Kalibriert werden können.

Für den Einsatz in Verbindung mit einer Druckschlauchmessung, muss eine spezielle Funktion implementiert werden, die bei Bedarf einen automatischen Differenzdruckabgleich durchführen kann. Dieser soll immer dann durchgeführt werden, wenn der Druck einen definierbaren Schwellwert (P) für eine definierbare Zeit (t) über- bzw. unterschreitet.

Das Pressure Sensor Modul sollte ein Teilbares System werden, das aus einem wechselbaren Drucksensor, dem eigentlichen Auswertemodul und einem schnell wechselbaren Schlauchsystem besteht.

Auf diese Weis ist es leicht möglich das Sensorsystem je nach Anforderung kundenspezifisch anzupassen.

In einem weiterer Entwicklungsschritt, soll die Firmware um eine eigenständige Zeitnahme Funktionalität erweitert werden.
Die Zeitmessung beginnt mit dem ersten Überfahren des Schlauchsensors und endet mit dem zweiten Überfahren.
Damit die Zeitmessung nicht sofort nach dem Überfahren mir den Hinterreifen wieder beendet wird, soll eine Verzögerungszeit zwischen der Start- und Endzeiterfassung eingegeben werden können, um dies zu verhindern.

Der Drucksensor:

Der verwendete Drucksensor ist ein analog arbeitender Sensor vom Typ: NP-TP-0016.
Er besitzt ein robustes Edelstahlgehäuse in dem sich ein präziser Druckkeramiksensor befindet. Die Vorverarbeitung des Messwerts übernimmt ein integrierter Mikrocontroller.
Der Sensor besitzt eine lange Lebensdauer bei einer geringen Langzeitdrift.

Die Verbindung zur Auswerteelektronik wird über eine dreipolige wasserdichte PACK-Steckverbindung hergestellt.
Die Versorgungsspannung des Sensors beträgt 5V ± 0,25V
Der Messbereich beträgt 0 – 15 psi / 0 – 1 bar
Der Analogausgang arbeitet in einem Spannungsbereich von 0,5V – 4,5V linear zum Skalendruck. Der Zerstörungsdruck liegt beim 3-fachen Skalendruck.

Da der Sensorwert über ein Analogsignal im Bereich von 0,5V – 4,5V übertragen wird, ist es leicht möglich, beim einem Über- bzw. Unterschreiten dieser Werte, eine Drahtbruch bzw. Kurzschluss Auswertung vorzunehmen.

Farbcode der Sensoranschlussdrähte:

  • Analogausgang 0,5-4,5V                   Grün
  • +5V (VDD)                                                 Schwarz
  • Masse (GND)                                            Rot
Datenblatt Drucksensor NP-TP-0016
Datenblatt Drucksensor NP-TP-0016
5V-Druck-Sensor-0-15-PSI-Edelstahl.pdf
271.2 KiB
42 Downloads
Details

Anschlussbelegung Hardware

Anschlussbelegung V1.00

REL. MIN      Potentialfreier Kontakt für eine min. Druck
REL. MAX    Potentialfreier Kontakt für eine max. Druck
REL. ERR      Potentialfreier Kontakt für eine Sensorstörung
SENS.             Sensor analog Eingang max. 0-5V
GND               Ground (Minus)
+5V                 Spannungsversorgung 5V Sensor
+3,3V             Spannungsversorgung 3,3V Sensor
+8-27V-       Spannungsversorgung Pressure Sensor Modul

Versionsverlauf:

Intended:

  • Integration Zeitmessmethode durch Druckauslösung
  • Ergebnisliste im Webserver.
  • Ergebnistabelle im Webserver als CSV exportieren.
  • Anzeige der Ergebnisse in der Blynk App.
PressureSensor V101
PressureSensor V101
PressureSensor_V101.png
Version: 1.01
2.9 KiB
30 Downloads
Details

Released:

  • 15.12.2020: Version 1.00
    – Druckmessung relativ / absolut
    – Autocalibration
    – Sensorfehlererkennung Relaisausgang NC/NO
    – Seriale Ausgabe der Werte über USB,
    – Min/Max Wert Relaisausgänge NC/NO
    – Webbrowser Darstellung
    – Blynk Applikation
PressureSensor V1.00
PressureSensor V1.00
PressureSensor_V100.png
Version: 1.00
10.7 KiB
29 Downloads
Details

Dash Button mit Bestellsystem Software

Was ist ein Dash Button?

In diesem Projekt entsteht eine Batterie betriebener WLAN Dash Button in robuster Ausführung.
Die Elektronik soll in einem Gehäuse aus Metall untergebracht werden und eine Schutzart von IP64 erfüllen (Schutz gegen Spritzwasser und Staub).

Ein Dash Button ist eine kleine Mikrocontroller gestützte Schaltung, die bei Anforderung mit einem lokalen WLAN Netzwerk eine Verbindung herstellen kann, um so Daten an einen beliebigen Server zu senden.

Um einen Dash Button in ein bestehendes WLAN Netzwerk zu integrieren, startet der Dash Button im AP-Modus, nach dem Verbinden z.B. mit einem Smartphone oder Laptop, wird automatisch ein Captive Portal auf dem Endgerät geöffnet.

Hier können anschließend folgende Credentials definiert werden:

  • SSID des lokalen WLAN Netzwerks
  • Passwort des lokalen WLAN Netzwerks
  • Hostname des Ziel-Servers
  • URL
  • Dash Token, ein ein-eindeutiger Schlüssel für die Aktion die der Dash Button auslösen soll

Aufbau der Hardware

Der Dash Button soll unabhängig von einer externen Energieversorgung arbeiten können. Das bedeutet, dass die Energieversorgung mit Batterien realisiert wird, die im Gehäuse untergebracht werden.

Prototyp Dash Button von oben
Prototyp Dash Button von unten
Prototyp eines DashButtons im Metallgehäuse, zum Testen der Feldstärke mit einer ext. Antenne.

Deep Sleep Modus

Softwaretechnisch wird hierfür die sogenannte Deepsleep Funktion des Mikrocontrollers verwendet. In diesem Modus hat die Schaltung eine Stromaufnahme <70uA, was eine lange Lebensdauer der Batterien im Standby garantiert.

Nach Herstellerangaben, liegt der Deepsleep Ruhestrom bei ca. 10uA. Gemessen wurde beim Dashbutton jedoch eine Ruhestromaufnahme von ca. 60 uA. Dies muss jedoch noch genauer untersucht werden, da hier eine Messfehlertoleranz des Multimeters anzunehmen ist.

20150112172151.jpg

Eine Standard ESP-07 enthält einen Flash RAM von 1M, für die Programmierung wird ein SPIFFS von 64 K voreingestellt.
Direkt auf dem Modul befinden sich zwei LED’s , die rote LED ist direkt mit der Versorgungsspannung verbunden. Diese LED verursacht auch im Deepsleep Modus einen schadhaften Ruhestrom von ca. 15 mA und muss deshalb entfernt werden.
Die blaue LED ist mit TxD verbunden und zeigt die Aktivität an diesem Pin an.

Änderung des Energieversorgungsskonzeptes

Bei den Tests mit verschiedenen Primärquellen hat sich gezeigt, das mit dem ersten Layoutentwurf immer nur ein relativ kleiner Teil der zu Verfügungstehenden Kapazitäten entnommen werden kann. Deshalb wird nun in einer überarabeitenen Hardware Revision ein StepUp Booster vom Typ   NCP1402SN33T1 eingesetzt.

Dieser Baustein hat eine sehr niedrige Anlaufspannung von ca. 0.8V. Werden zwei AA-Battereien in Reihe betrieben, kann jede Zelle bis zu einer Spannung von 0.4V entladen werden, was knapp 90% der Gesamtkapazität der Zellen entspricht.

Der Baustein hat einen sehr niedrige Standby Stromaufnahme von nur 10uA und er stellt am Ausgang einen konstante Spannung von 3.3V zur Verfügung.

Das Schaltungsdesigne wird auch dahingehend geändert, dass auf den Standbystrom des NCP1402SN33T1 und den Deep Sleep Modus des ESP6288 verzichtet werden kann, da die Summe der beiden Ruhestromaufnahmen dann doch einen beträchtlichen Anteil von ca. 70 uA aus mahen würden.

Zu Einsatz kommt ein Mos Fet Transistor, der gleich zwei Aufgaben erfüllt. Zum einen dient er dem Verpolungsschutz, wenn die Batteriene versehentlich falsch eingelegt wurden und schützt so die Schaltkreise vor der Zerstörung.
Und zum anderen, wird er als Schalter für die Sapannungsversorgung verwendet.

Mit dem Betätigen des Tasters wird der Mos Fet leitend und stellt die Versorgungsspannung des Schaltkreises zur Verfügung. Ms nach dem starten des ESP 8266 steuert dieser dann übereinen Ausgang den Mos Fet an und verhindert so das sie Versorungsspannung nach dem loslassen des Taster wieder abgeschaltet wird.

Sobald alle nötigen Programmaktionen abgearbeitet wurden, gibt der ESP 8266 den Schaltausgang des Mos Fet’s wieder frei und die Spannungsversorgung wird abgeschaltet.

Batterie Kapazität

Die Richtwerte für Alkalien Batterien schwanken lt. Herstellerangaben in folgenden Bereichen:

AAA 1000  - 1500  mAh
AA  2000  - 3000  mAh
D   12000 - 20000 mAh

Eine Duracell Plus soll lt. Herstellers Angaben bis zu 2.9 Ah haben, was einer Laufzeit im Deepsleep Modus von mehreren Jahren entspräche.

Für Batterietests bietet das Layout unter anderem auch die Möglichkeit den Dash Button mit einer Knopfzelle zu betreiben.
Es hat sich jedoch gezeigt, dass eine Standard LR2032 nicht in Frage kommt, da bei diesem Typ bei einer Pulsbelastung die Spannung kurzfristig auf 2,8V einbricht. Was deutlich außerhalb der Spezifizierten Parameter des ESP8266 liegen würde.

Deshalb wurde für den Test eine Lithium Ionen Zelle z.B. Typ LIR 2032 (35mAh) verwendet. Da diese Typen auch bei einer Pulsbelastung in der für den ESP8266 definierten Spezifikation bleibt.
Der Nachteil dieser kleinen Bauform liegt jedoch in der kurzen Standbyzeit,  die bei rund 60 uA Ruhestromaufnahme gerade mal für ca. 25 Tage reicht.

Bei der Verwendung von zwei in Reihe geschalteten AA-Zink Kohle Batterien ist der Arbeitsspannungsbereich für den Betrieb eines ESP8266 sehr eingeschränkt. Bei neuen Batterien liegt die Spannung bei ca. 3,2 V. Nach einer Entladung von ca. 5% liegt die Spannung nur noch bei 3,0V. Somit erscheint der Einsatz solcher Batterietypen als wenig sinnvoll.

Eine weitere denkbare Option wäre der Verwendung von drei in Reihe geschalteten AA-Zellen, um das Spannungsniveau  in einen besseren Auslastungsbereich zu bekommen. Hier bei müsste dann jedoch wieder ein Spannungsregler eingesetzt werden, der zusätzliche Verluste mit sich bringt, was die Lebensdauer aber bei der verhältnismäßig geringen Einschaltzeit kaum einschränken dürfte.

Typische Kennlienie einer Duracell AA Batterie. (Quelle Duracell Datenblatt)

So wird nun im dritten Anlauf für dieses Projekt angenommen, dass entweder zwei paralell geschaltete LiFEPO4 AA Akkus zum Einsatz kommen oder drei AA-Zellen die in Reihe geschaltet werden. Oder die Dritte Option ein LIPO Akku mit einer Ausgangsspannung von 3.7V.

Die Platine erhält einen 3,3 V low drop Spannungsregler der Firma Mikrochip, vom Typ MIC5219-3.3BM5 LG33 3.3V –40°C to +125°C SOT-23-5.

Dieser Baustein besitzt einen Enable Eingang, der es erlaubt die komplette Schaltung abzuschalten ohne das ein merklicher Ruhestrom fließt.

Durch den Einsatz dieses Reglers kann ein ein Eingangsspannungsbereiche zwischen 3 – 5v abgedeckt werden. Darurch sind alle drei Varianten der oben beschriebenen Spannungsversorgungen möglich.

LiFEPO4 AA Akkus liefern eine Spannung von 3,4 V / 700 mA, was einer Batteriekapazität von 100% entspräche.
Durch eine Parallelschaltung von zwei LiFePO4 Akkus kann somit die Kapazität auf 1400 mAh erhöht werden.

Hierbei läge die Ausnützung der Batteriekapazität bei etwa 60% (800 mAh), im Vergleich zu drei Zink-Kohle Batteriene. Deren Entladeschlussspannung bei 1v liegt, was bei drei in reihe geschaltenenen Zellen ca. 3V entspricht  = minimale Eingangsspannung der EPS lt. Spec.

Es ergäbe sich rein rechnerisch eine Standbybetriebszeit von ca. 1,5 Jahren.

Ein großer Vorteil bei der Verwendung von LiFePO4 Zellen liegt darin, dass die Zellen wiederaufladbar sind und somit viele Male wieder verwendet werden können.
Ein gravierender Nachteil der Parallelschaltung von zwei Zellen liegt jedoch in einer Verpolung.
Wenn die Zellen von nicht fachkundigem Personal gewechselt werden sollen,  kann es durch die Parallelschaltung der beiden Zellen bei einem falschen Einlegen zu einem Kurzschluss kommen, der dann zur thermischen Zerstörung der Akkus und letztendlich des Dashbuttons führen würde.

Endladekennlinie einer LiFePO4 Zelle. (Quelle https://evtv.wordpress.com/2010/04/21/april-16-friday-show/)

Um eine lange Lebensdauer von Akkus zu gewährleisten, sind diese unbedingt vor einer Tiefentladung  zu schützen. Deshalb ist in der Firmware des DashButtons ein Schwellwert von 2,9 V programmiert, ab dem sich der Dash Button nicht mehr starten lässt. Die LED geht kurz an, blinkt für 1 Sekunde sehr schnell und geht dann sofort wieder aus!

Laut Herstellerangaben darf sich die Betriebsspannung eines ESP 8266 in einem Bereich von 3,0V – 3,6V bewegen (Typisch 3,3V).
Somit entspräche eine Batteriespannung von 3,0V gleich 0% Batteriekapazität, was einen sofortigen Batteriewechsel nötig machen würde!

Server Software

Die Server Software bietet die Möglichkeit, neben den Nutzinformation (Token) auch Informationen zur aktuellen Batteriespannung, Hard- und Software Version  und eine Statusinformation des DashButtons zu liefern.

Die Betriebsspannung wird mit dem Parameter &vbatt=x.xxx an den Server übergeben.
Er gibt die Batteriespannung in Volt an.

Beispielberechnung für die Batteriekapazität:

Bei Betrieb mit einer Li Fe PO4 Zelle , wird am Messeingang des Mikrocontrollers etwa eine  Betriebsspannung von 3,3V erreicht.
Was in diesem Fall einer prozentualen Batteriekapazität von 100 % entspräche.
Die minimale Betriebsspannung sollte 3,0V nicht unterschreiten, was somit die 0% der Batteriekapazität fest legt.

Im folgenden Beispiel wird angenommen, dass die Batterie noch eine Spannung von 3,15V (50%) liefert:

Y = Eingangsspannung 3,15V
Y0= 3,0 V
Y100= 3,3 V

X= Ergebnis in %
X0 = 0 %
X100 = 100%

X:= ((X100 – X0) * ( Y – Y0 )  /  (Y100 – Y0)) + X0;

        100 * 0.1
Y = ————-  + 0 = 50%
               0.2

Wird der Parameter nicht übergeben, wird der Wert im Server automatisch auf -1 gesetzt. Was soviel bedeutet, dass der Batteriestatus nicht ermittelt werden konnte bzw. nicht bekannt ist.

In der Server Software kann für jeden DashButton der verwendete Batterietyp ausgewählt werden. Somit kann die Berechnung der Batteriekapazität anhand einer hinterlegten Herstellerkennlinie erfolgen, was eine genauere Anzeige der tatsächlichen Kapazität ermöglicht.

Mit diesen Informationen kann in der Serverapplikation ein Mechanismus angestoßen werden, der den Admin rechtzeitig darüber informiert, wann ein Batteriewechsel erforderlich wird.

Das Layout bietet die Möglichkeit, verschieden Batterietypen in verschiedenen Leistungsklassen und Größen zu verwenden.

Externe Antenne

Um eine stabile Funkverbindung etablieren zu können, muss bei der Verwendung eines Metall- bzw. metallisierten Gehäuses eine externe Antenne verwendet werden!

Bei einem Standard ESP-07 Modulen ist bereits ein Anschluss für eine externe Antenne vorhanden. Wird der externe Antennenanschluss verwendet, muss die Verbindung zur internen (aufgelöteten) Antenne unterbrochen werden. Hierfür ist der Null Ohm Wiederstand neben dem Antennenanschluss zu entfernen.

Für die Verwendung einer externen Antenne muss der null Ohm Wiederstand (rotes Quadrat) entfernt werden. Wird das ESP07 Modul mit einer Batterie betrieben muss zusätzlich die Power LED (roter Kreis) entfernt werden, um ein unnötiges entladen der Batterie zu vermeiden.

 

Wurde die interne Antenne entfernt,ist zwingend darauf zu achten, dass das Modul nicht ohne eine angeschlossene externe Antenne betrieben wird. Da dies zur Zerstörung des ESP-Moduls führen kann.

Programmierung

Die Programmierung des Mikrocontrollers erfolgt über einen Programmieranschluss, der auf der Platine vorhanden ist.
Diese Schnittstelle ist notwendig, um erstmalig eine Firmware in den Mikrocontroller laden zu können.

Hierbei ist zu beachten, dass die Lötbrücke J1 die im Bild mit einem Stern gekennzeichnet ist, nicht geschlossen sein darf. Da im Auslieferungsstand der Pin GPIO16 auf low liegt und somit eine Dauer Reset anliegen würde.

Im Programm darf somit der GPIO16 nicht mit pinMode() konfiguriert werden.

Lötbrücke für ein optionales automatisches aktivieren des DashButton nach einer fest definierten Zeitspanne. Sie verbindet den Pin GPIO16 mit dem Eingang RESET.

Funktionsweise des Tasters und der LED

Das Layout bietet je nach Bestückung die Möglichkeit einen Taster und eine LED in SMD Technik oder aber auch bedrahteten Bauelemente zu verwenden. Somit ist es auch möglich andere Bedientasten z.B. mit Kabelanschlüssen ein zu löten.

Befindet sich das Modul im Deepsleep Modus, kann es durch einen Tastendruck aufgeweckt werden.

Je nachdem wie lange der Taster  gedrückt gehalten wir, werden unterschiedliche Funktionen aufgerufen:

  • Drücken bis eine Verbindung ausgebaut wurde  – Test Modus (Status 0).
  • Drücken über einen Zeitraum von 10 Sekunden – WIFI Setup (Status 1).
  • kurzes Drücken des Tasters – löst eine Bestellung aus (Status 2).

Anschließend versucht das Gerät eine Netzwerkverbindung zum lokalen AP zu etablieren, was durch ein langsames blinken der LED signalisiert wird.
Kann keine Verbindung hergestellt werden, beginnt die LED schnell zu blinken und man hat die Möglichkeit für 240 Sekunden eine Verbindung zu diesem Dash Button aufzubauen und die Konfiguration vor zu nehmen.
Erfolgt in dieser Zeit kein Login auf dem Dash Button, wird der Mikrocontroller wieder in den Deepsleep Modus versetzt, um die Batterie nicht unnötig zu strapazieren.

Ist der Verbindungsaufbau zum lokalen WLAN geglückt, wird die Nutzinformation (Dash Token) an den in den Credentials definierten Server verschickt.
Wurde der Empfang der Information vom Server bestätigt, leuchtet die Status LED für drei Sekunden kontinuierlich.
Wird der Empfangs nicht vom Server bestätigt, wird dies durch schnelles Blinken der LED für drei Sekunden angezeigt.
Anschließend wechselt der Mikrocontroller wider in den Deepsleep Modus.

Je nachdem welches Ereignis am Dashbutton ausgelöst wurde, wird eine entsprechende Statusinformation im Parameter &status=x dem HTTP Put Request übergeben. Wird der Parameter nicht mit übergeben, wird der Wert im Server automatisch auf -1 gesetzt, was soviel bedeutet das der Status nicht bekannt ist.

Server Applikation für den DashButton
DashButtonServer
DashButtonServer
DashButtonServer.zip
Version: V 1.0.0.0
7.9 MiB
425 Downloads
Details

Die Serverapplikation kann auch direkt mit dem Webbrowser getestet werden. Hierfür wird in die Adresszeile der folgende Aufruf eingegeben:

http://HOST
/URL?&token=ef98c8246ef0409da5fb3a27afa4ec61
&vbatt=3.12&hv=1.00&sv=1.03&status=1

  • Host:
    Ist die IP-Adresse des Servers z.B. 192.168.1.123
  • URL:
    Ist eine Pfadangabe (optional für den augenblicklichen Stand) soll später der Einordnung der Einträge dienen, z.B. für die Standorte.
  • token:
    Ist ein 32 stelliger ein eindeutiger Schlüssel des betreffenden Dash Buttons.
  • vbatt:
    Gibt die Batteriespannung in Volt an.
  • hv:
    Gibt die aktuelle Hardware Revision des DashButton an.
  • sv:
    Gibt die aktuelle Firmware Version des DashButton an.
  • status:
    Information über den Auslöser des Ereignisses.
    0 – Test (Button wurde kürzer als drei Sekunden gedrückt)
    1 – Settings (Die Einstellungen wurden aufgerufen, durch langes drücken des Tasters)
    2 – Order (Ein Bestellauftrag wurde abgesetzt)
    3 – n Für weitere Statusinformationen reserviert
Weitere Ideen:
  • Der Dash Token sollte im Prinzip ein 32 Byte Hashcode sein, der einen Prüfsumme oder einen CRC Check enthält, um die Authentizität des Tokens auf dem Server verifizieren zu können.
  • Es wäre denkbar, dass sich ein Dash Button der längere Zeit nicht betätigt wurde, automatisch aktiviert (z.B. alle 24h) und seinen Batteriestatus an den Server sendet.
    Der Parameter „status“ würde das Ereignis dann als Test identifizieren.
    Hierbei wäre zu bedenken, dass ein zyklisches Verbinden mit dem WLAN und das Senden dieser Statusinformationen die Batterielebensdauer zusätzlich verkürzen würde.

Einen lokalen Blynkserver beim Booten der Raspberry PI Starten

In diesem Beitrag wird am Beispiel eines lokalen Blynk Servers gezeigt, wie auf einer Raspberry PI eine Java File beim Starten und Herunterfahren der PI automatisch gestartet und heruntergefahren werden kann.

  1. Zuerst wird ein Startscript und ein Stopscript erstellt, die später die Applikation mir Rootrechten startet und stoppt. Hier für wechseln wir mit sudo bash unsere Benutzerrechte auf Root.In unserem Beispiel speichern wir die Scripte im Verzeichnis /usr/local/bin/…
  • Start Script: /usr/local/bin/startBlynk.sh
  • Stop Script: /usr/local/bin/stoppBlynk.sh

Nach dem erstellen der Scripte müssen noch deren Attribute auf ausführbar gesetzt werden. Dies geschieht mit dem Befehl chmod +x NAME

Zu Starten des BlynkServers kann der Inhalt des Scripts startBlynk.sh im einfachsten Fall so aussehen:

#!/bin/bash
/usr/lib/jvm/jdk-8-oracle-arm32-vfp-hflt/bin/java -jar /home/pi/Blynk/server-0.39.10.jar -dataFolder /home/pi/Blynk &

Zu Stoppen des BlynkServers kann der Inhalt des Scripts stoppBlynk.sh im einfachsten Fall so aussehen:

#!/bin/bash
#sucht und beendet die Java Applikation
ps auxf |grep ’server-0.xx.x.jar ‚|`awk ‚{ print „kill “ $2 }’`

Als nächstes benötigen wir noch das folgendes Script (localBlynk) , wir speichere es in das Verzeichnis /etc/init.d/localBlynk

  • sudo nano /etc/init.d/localBlynk
  • Inhalt der Date:#! /bin/sh
    ### BEGIN INIT INFO
    # Provides:        localBlynk
    # Required-Start:
    # Required-Stop:
    # Default-Start:        2 3 4 5
    # Default-Stop:         0 1 6
    # Short-Description:    Stars & Stops BlynkServer
    # Description:          Stars & Stops BlynkServer
    ### END INIT INFO

 

# Start Stop Blynk local Blynk Server

case $1 in
start)
/bin/bash /usr/local/bin/startBlynk.sh
;;
stop)
/bin/bash /usr/local/bin/stopBlynk.sh
;;
restart)
/bin/bash /usr/local/bin/stopBlynk.sh
/bin/bash /usr/local/bin/startBlynk.sh
;;
esac
exit 0

  • Um das Script zum Systemstart hinzu zu fügen, führen wir nun noch  folgende Kommandos aus:cd /etc/init.d/
    sudo chmod 755 localBlynk
    sudo update-rc.d localBlynkdefaults

 

Einen eigenen lokalen Blynk Server auf dem Raspberry PI installieren

Logen Sie sich auf ihrer Raspberry z.B. per ssh ein.

Nun wird die aktuelle Java Version (Java 8) installiert :

sudo apt-get install oracle-java8-jdk

Stellen Sie sicher, dass nun die aktuelle Java Version installiert wurde.

java -version
Output: java version "1.8.0_40"

Download des Blynkserver jar Files in das „/home/pi/Blynk Verzeichnis.
Sollte das Verzeichnis noch nicht existiert muss es zuerst angelegt werden.

Alle folgenden „sudo“ Anweisungen kann man sich sparen, wenn man gleich in den „sudo bash“ wechselt, dies ist vergleichbar mit dem „su“ bei anderen Linux Distributionen.

pwd
/home/pi/
sudo mkdir Blynk
cd Blynk
sudo wget "https://github.com/blynkkk/blynk-server/releases/download/v0.39.10/server-0.39.10.jar"

Es ist auch möglich,  die Server Datei manuell via ssh oder scp herunter zuladen und in das entsprechende Verzeichnis hinein zu kopieren .

Um den Mailversand zu aktivieren, muss im Verzeichnis /home/pi/Blynk eine Datei mit dem Namen mail.properties angelegt werden.

Der Inhalt dieser Datei hat folgendes Format.

mail.smtp.auth=true
mail.smtp.starttls.enable=true
mail.smtp.host=smtp.gmail.com
mail.smtp.port=587
mail.smtp.username=Anmeldename
mail.smtp.password=Kennwort

Die aktuelle Blynk Server Version ist unter:
https://github.com/blynkkk/blynk-server/releases
zu finden.

  • Server mit den default Einstellungen starten (Hardware Port 9443 SSL)
    sudo java -jar server-0.39.10.jar -dataFolder /home/pi/Blynk        
    
  • Als Rückmeldung des Servers erscheint eine Meldung wie diese :
    Blynk Server successfully started.
    All server output is stored in current folder in 'logs/blynk.log' file.
    

Aktiviere automatischen Server Neustart

Um diese Option zu aktivieren, suchen Sie das Verzeichnis:
/etc/init.d/rc.local
öffnen sie die Datei mit dem vi Editor und fügen sie die folgende Zeile hinzu:

sudo vi rc.local
java -jar /home/pi/Blynk/server-0.39.10.jar -dataFolder /home/pi/Blynk &

Sollte dieser Ansatz nicht funktionieren, versuche Sie bitte folgendes:

sudo crontab -e

und fügen sie die folgenden Zeilen hinzu

    @reboot java -jar /home/pi/server-0.39.10.jar -dataFolder /home/pi/Blynk &

anschließend speichern und beenden.

Der Administrationsbereich kann anschließend bei laufendem Blynk Server mit folgender URL im Browser geöffnet werden.

https://your_ip|(127.0.0.1):9443/admin

Um den Blynkserver im Lokalen Netzwerk auch über das Internet erreichen zu können wird der Einsatz einer DynDNS Adresse empfohlen. Diese kann dann z.B. in einer Fritzbox hinterlegt werden, ändert sich die IP-Adresse der Fritzbox (alle 24 Stunden veranlaßt durch den Provider), wird automatisch die DynDNS Adresse informiert und der Server ist somit immer mit einem Pseudo Domain Name erreichbar.
In lokalen Router müssen außerdem noch ein paar Portfreigaben definiert werden. EIn Auszug der wichtigsten Einstellungen ist hier zu sehen.

 

Viele weitere Informationen zur Konfiguration der Blynk Servers.