Archiv der Kategorie: IoT & Embedded Innovation

MessageBot Messenger Modul

 

Folgende Artikel zu diesem Projekt können in unserem Web Shop erworben werden.

Alle MessageBot Produkte im Shop

MessageBot Dokumentation
MessageBot Dokumentation
MessageBot.zip
Version: V1.00
5.7 MiB
4 Downloads
Details
MessageBot Server Setup
MessageBot Server Setup
MessageBot-Server-Setup.zip
Version: V1.00
3.8 MiB
1 Downloads
Details

Das Message Bot Modul stellt verschiedene Messenger Dienste zur Verfügung, WhatsApp, Telegram, Signal und Simplepush.
Zusätzlich besteht die Möglichkeit Nachrichten an eine eigenständige PC-Server Applikation zu versenden, die zum freien Download auf unserem Blog zur Verfügung gestellt wird.

Key Features

  • Verschiedene Messenger Dienste, WhatsApp, Telegram, Signal und Simplepush sowie Windows Server Applikation
  • Schnelle Reaktionsgeschwindigkeit
  • Funktionen und Texte frei parametrierbar
  • Wirkrichtung des Eingangskontakts umschaltbar (NO / NC)
  • Eingangskontakt für einen potentialfreien Meldekontakt
  • Mikrokontroller ESP-01S mit 1 MB Flash
  • Sehr kompakte Bauform
  • WIFI-Manager Landing Portal
  • Integrierter Web-Server mit Kennwort Abfrage
  • OTA (Over the Air) Updatefunktion für Firmware Aktualisierungen

Allgemeines

Das MessageBot Projekt bildet die Brücke um über einen potentialfreien Eingangskontakt frei definierbare Meldung an einen Messenger Dienst zu senden.

Dies könnte beispielsweise der Störmeldeausgang einer Maschine, ein Tür- oder Fensterkontakt, eine Katzenklappe aber auch jeder andere beliebige Meldekontakte sein.

Um Daten von einem Mikrokontroller an diverse Messenger Dienste zu senden, wird bei diesem Modul der Dienstanbieter CallMeBot genutzt. CallMeBot stellt einen API-Schnittstelle bereit, über die es möglich ist, Nachrichten zu verschiedenen anderen Diensten wie z.B. WhatsApp, Signal, Telegram, IFTTT, E-Mail, IO-Broker usw. zu senden.

Die private Nutzung des CallMeBot (https://www.callmebot.com/) Dienstes ist für eine gewisse Anzahl von Nachrichten kostenlos, danach wird ein kleiner Monatlicher Betrag von derzeit 0,40 € / Monat erhoben.

Alternativ kann aber auch der Dienst von Simplepusch im Modul ausgewählt und verwendet werden.

Zusätzlich steht eine kleine Server Applikation zu Verfügung, die auf einem zentralen PC oder Server betreiben werden kann. Damit können Nachrichten und Statusmeldungen von mehreren Message Bot Modulen Empfangen, ausgewertete und per E-Mail Verteiler weiterverteilt werden können.

Das MessageBot Modul verfügt über ein ESP-01S Modul der die Firmware enthält und eine WIFI eine Verbindung zum Internet hergestellt. Wird der Send-  Message Eingang oder der potentialfreie Eingangskontakt betätigt, löst die steigende bzw. fallenden Flanke des Eingangssignals das senden der jeweils dafür vorher definierten Textnachricht an den hinterlegten Messenger Kontakt aus.

Nach kurzer Zeit erscheint dieser Meldetext dann in der Messanger APP auf dem Smartphone.

Platine und Anschluss

Nach Abschluss der Konzeptphase wurde die obige kompakte MessageBot Platine entwickelt. Diese besitzt für die Programmierung und Spannungsversorgung eine USB-C Anschluss Buchse.
Für das ESP01-S (1MB Modul) wurde die Buchsen Leiste J2 vorgesehen. Die Klemmleiste J1 wurde als Schraubklemme ausgeführt, an die dann ein beliebiger potentialfreier Eingangskontakt angeschlossen werden kann. Dieser Eingang besitzt einen ESD-Überspannungsschutz.
Weiterhin sind zwei Taster vorhanden. Der Taster SW2 ist parallel zum Eingangskontakt geschaltet und kann somit ebenfalls verwendet werden um eine Nachricht zu versenden.
Der Taster SW1 dient zum Zurücksetzen der Parametereinstellungen und um den Bootloader des ESP zu aktivieren

Die Platine kann in zwei Ausbaustufen bestückt bzw. geliefert werden. Einmal in einer minimalen Bestückung, die lediglich für das Versenden von den Messages verwendet wird.
In der zweiten Ausbaustufe kann die Platine für die  Programmierung und die Entwicklung verwendet zu werden. Die zweite Ausbaustufe ist für den reinen Messanger Betrieb nicht erforderlich, da nach der ersten Programmierung des ESP-01S Moduls (z.B. mit einem externen Programmieradapter) Updates der Firmware jederzeit über OTA erfolgen können.

Weboberfläche

Die Weboberfläche kann über die lokale IP-Adresse in Ihrem Netzwerk, mit einem Webbrowser aufgerufen werden. Sie dient der Änderung der MessageBot Konfigurationseinstellungen und der Auswahl des Messenger Dienstes (WhatsApp, Signal, Telegram oder Simplepush) über den die Nachrichten versendet werden sollen.
Hier können auch die WIFI-Einstellungen zurückgesetzt oder nach neuen Firmware Update gesucht werden.
Änderungen an der MessageBot Konfiguration werden direkt nach dem Übernehmen mit dem Submit Button aktiv, so dass weder der WIFI-Manger erneut aufgerufen werden oder das Modul neu gestartet werden muss.

Aus Sicherheitsgründen wurde für das aufrufen der Weboberfläche eine Eingabedialog mit Benutzername und ein Kennwort Abfrage eingefügt!

Die Standard Anmeldedaten für die Eingabeaufforderung lauten:
Benutzername: admin
Kennwort: Password

Hinweis:
Sollte keine Sicherheitsabfrage für die Weboberfläche gewünscht sein, wird das Kennwortfeld einfach leer gelassen und es erscheint kein Anmeldedialog mehr beim Aufrufen der Weboberfläche.

  • Select Messanger Type“ dient der Auswahl des Messenger Dienstes, an den die Nachrichten versendet werden soll. Je nach Auswahl erscheinen unterschiedliche Dialogfelder für die Eingabe der Daten für den ausgewählten Dienstanbieter auf der Webseite. Um eine Eingabe zu speichern, muss abschließend der „Submit“ Button gedrückt werden.
  • Der „Devicenname“ dient der Identifikation des Message Bot Moduls an Hand eines frei definierbaren Klartextnamens. Dieser Name wird im Tab des Webbrowsers und als erste Textzeile ihrer Nachricht, sowie als WLAN Access Point Name angezeigt.
    Im Server Modus wird dieser Name ebenfalls als Gräte Name zur Identifikation in der Gerätekonfiguration angezeigt.
    Die Eingabe des Devicename erfolgt mit 5-30 Zeichen, ungültige Eingaben werden ignoriert. Um den neuen Wert zu speichern, muss abschließend der „Submit“ Button gedrückt werden.
  • Der „Message Text 0″ ist der Textliche Inhalt einer gehenden Meldung die an den Dienst versendet werden soll.
    Um keine Meldung zu senden, wenn der Eingang zurückgesetzt wird, kann hier der Platzhalter Bindestrich „-„ eingetragen werden. Die Eingabe des Message Textes erfolgt mit 1-50 Zeichen, ungültige Eingaben werden ignoriert. Um den neuen Wert zu speichern, muss abschließend der „Submit“ Button gedrückt werden.
  • Der „Message Text 1″ ist der Textliche Inhalt einer kommenden Meldung die an den Dienst versendet werden soll.
    Um keine Meldung zu senden, wenn der Eingang zurückgesetzt wird, kann hier der Platzhalter Bindestrich „-„ eingetragen werden. Die Eingabe des Message Textes erfolgt mit 1-50 Zeichen, ungültige Eingaben werden ignoriert. Um den neuen Wert zu speichern, muss abschließend der „Submit“ Button gedrückt werden.
  • Das Feld „Phone Number“ erscheint bei der Auswahl von WhatsApp und Signal und enthält Ihre Telefonnummer mit Ländervorwahl z.B. +491234567890. Die Eingabe der Phone Number erfolgt mit 8-15 Zeichen, ungültige Eingaben werden
    ignoriert. Um den neuen Wert zu speichern, muss abschließend der „Submit“ Button gedrückt werden.
  • Das Feld „API Key [WhatsAPP | Signal | Simplepush]“ erscheint bei der Auswahl von WhatsApp, Signal und Simplepush und enthält die Ziffernfolge, die Sie vom Dienstanbieter nach der Registrierung erhalten haben.
    Die Eingabe des API Key erfolgt mit 1-6 Ziffern, ungültige Eingaben werden ignoriert. Um den neuen Wert zu speichern, muss abschließend der „Submit“ Button gedrückt werden.
  • Das Feld „Input Contact“ zeigt die Ruhestellung des potentialfreien Eingangskontakts an. Die Wirkrichtung kann mit der Taste „Change State“ zwischen „Normaly open“ und „Normaly closed“ umgeschaltet werden. Steht die Auswahl z.B. auf „Normaly open“ und wird der Eingangskontakt dann geschossen, wird der Message Text 1 versendet.
  • Die Anzeige „ESP-Device ID“ gibt die jeweilige Device ID des ESP Mikrokontrollers zurück, die aus einem Teil der MAC-Adresse besteht und so eindeutig dem entsprechenden Modul zugeordnet werden kann.
    Im Server Mode Betrieb dient diese ID der eindeutigen Identifikation der einzelnen Message Bot Module.
  • Die „ESP-Core VDD“ zeigt die Versorgungsspannung des Mikrokontrollers an, diese sollt sich für einen stabilen Betrieb im Bereich zwischen min. 3.0V – max. 3.5V bewegen.
    Handelt es sich um ein Batteriebetriebenes Messanger Bot Modul, wird hier die aktuelle Batterie Spannung angezeigt!
  • Die Anzeige „WIFI-Quality“ zeigt die aktuelle Empfangsqualität des WIFI-Signals in Prozent an.
  • Der Taster „Send Testmessage“ sendet mit den vorhandenen Einstellungen eine Nachricht an die gespeicherten Teilnehmerdaten. Hierbei wird der Textinhalt der kommenden- und gehenden Meldung versendet. Um keine entsprechende Nachricht zu versenden, kann der Platzhalter „–„ in das entsprechende Textfeld eingetragen wurde.
  • Die „Event Tabelle“ enthält die letzten 15 Ereignisse mit Zeitstempel und Sendestatus. Diese Daten können bei Bedarf mit dem Button „CSV-Export“ als CSV-Datei auf den lokalen Rechner gespeichert und dann z.B. mit Excel geöffnet und weiterverarbeitet werden.
  • Mit dem Taster „Update“ sucht das Message Bot Moduls nach einer neueren Firmware Version im Internet. Die aktuelle Versionsnummer wird in der Weboberfläche angezeigt. Bitte informieren Sie sich vor einem Update über die Änderungen auf der Webseite des Herstellers.
    Bitte überprüfen Sie nach jedem Firmware Update die Message Bot Moduleinstellungen, da sich dadurch ggf. Änderungen oder ein erweiterter Funktionsumfang ergeben haben könnten.
  • Mit dem Taster „Reset to Factory settings Parameters“ werden die die Werkseinstellungen wieder hergestellt. Danach müssen die Verbindungsdaten im WIFI-Manager (Konfigurationsportal) des Message Bot Moduls neu eingetragen werden.

MessageBot Windows Server Applikation

Die MessgeBot Server Applikation wurde für Windows als zentrale Sammelstelle für Nachrichten von verschiedenen MessageBot Module entwickelt.
Sie wird auf einem zentralen PC oder Windows Server installiert werden und wartet auf Nachrichten der MessageBot Module.

Wird die erste Nachricht von einen Modul empfangen, wird die Baumansicht automatisch um einen Zweig erweitert und das neue Modul als Datensatz eingefügt.
Dieser Moduldatensatz bietet viele Informationen über das Modul wie z.B. die Ward- und Software Version, die Betriebsspannung, die Modul ID, die aktuelle IP-Adresse und den Bot Namen. Dieser Datensatz kann dann um weitere Informationen ergänzt und Konfiguriert werde.

So kann nach dem erhalt einer neuen Nachricht z.B. eine E-Mail an eine hinterlegte Empfängerliste versendet werden. Zusätzlich besteht die Möglichkeit den Online Status des MessageBot Moduls zu überwachen und bei einer Störung ebenfalls eine E-Mali Benachrichtigung versendet werden.
Die eingehenden Nachrichten der verschiedenen Module werden chronologisch sortiert in einer Listenansicht angezeigt und können dort bearbeitet werden. Je nach Filter Auswahl und selektiertem Modul, werden verschiede Listenansichten erzeugt.

Durch offene, bearbeitete oder ausgeblendete, Nachrichten werden mit Verschieden Symbolen gekennzeichnet. Zusätzlich gibt es Statussymbole für eine Unterbrochene Verbindung zum Modul und dem Zustand der Spannungsversorgung.

In der Baumansicht wird durch ein entsprechendes Symbol darauf hingewiesen ob für dieses Modul offene Meldungen vorhanden sind.

Das Programm kann so konfiguriert werden, dass nach jedem neuen Nachrichteneingang automatisch ein Backup Datei auf der Festplatte abgelegt wird. Diese Backups könne vom Anwender über einen Kalenderfunktion selektiert und bei Bedarf wieder aus dem Programmordner gelöscht werden.

Für die Server Applikation steht eine Setup Datei zur Verfügung, mit der das Programm komfortabel auf dem Rechner installiert und deinstalliert werden kann.

Windows Defender Firewall Einstellung

Da die Kommunikation der MessageBot Module über das lokalen WIFI-Netzwerk stattfindet, muss für die MessageBot Server Applikation nach dem ersten starten die Windows Firewall Richtlinie auf dem Zielrechner angepasst werden.

Der folgenden Dialog erscheint nach dem ersten Start der Applikation. Hier muss auch der Haken für „Private Netzwerke von MessageBot Server in diesem Netzwerk“ freigegeben werden!

Hinweis:
Mit dieser Freeware Test Version können maximal drei Module Verwaltet werden.
Für eine Erweiterung der Modul Anzahl können Sie in unserem Shop verschieden Lizenzen erworben werden.
Wünschen Sie eine Anpassungen der Software an Ihre Bedürfnisse geben wir gerne ein unverbindliches Angebot ab
.

Versionsverlauf:

Intended:

  • Version 1.01
    Keine Anfragen

Released:

  • 31.08.2022 Version 1.00
    Serveranbindung realisiert.
  • 19.07.2022 Version 1.00
    Sonderzeichen ermöglicht „ÄäÖöÜüß“, NTP-Server und Event Tabelle mit bis zu 15 Einträgen integriert.  Anzeige der WIFI-Empfangsstärke in % im Webinterface.
    ESP-ID und Core VDD eingefügt.
    Erweiteung der Messenger Dienste
  • 29.06.2022 Version 1.00rc0
    Projekt Begin

MQTT-Smartes Garagentor

Techniche Beschreibung MQTT-Smartes Garagentor
Techniche Beschreibung MQTT-Smartes Garagentor
Techniche-Beschreibung-MQTT-Smartes-Garagentor.pdf
1.3 MiB
47 Downloads
Details

Das Modul sowie der Source Code zu diesem Projekt kann in unserem Web Shop erworben werden.

Key Features

  • Leichte Integration in einen bestehenden Torantrieb
  • Temperatur und Feuchtesensor
  • Verschleißfreie Ultraschallmessung
  • Torstellung und Fahrzeugerkennung
  • Bedienung auch per 433 MHz Funkfernbedienung
  • Anmeldung von bis zu vier Funkfernbedienungen
  • Bedienung per BLYNK App, ©Amazon Alexa, Webbrowser und MQTT möglich
  • ©Amazon Alexa Integration
  • Funktionsparametrierung der am Modul mittels Taster,
    per MQTT, Webbrowser und BLYNK App
  • Potentialfreier Relais Ausgangskontakt zur Ansteuerung des Torantriebs, Eingang für einen zusätzlichen vor Ort Taster
  • Innovativer Mikrokontroller ESP-07S mit 4 MB Flash
  • Kompakte Bauform und leichte Montage
  • WIFI-Manager, Landingportal für die WIFI- und MQTT Konfiguration
  • Integrierter Web-Server
  • MQTT-Client Funktion
  • OTA-Firmware Update

Allgemeines

Ob Sie Ihren vorhandenen Garagentorantrieb smart machen möchten oder nur einen Ersatz für eine verlorene oder defekte original Funkfernbedienung suchen. Haben sie hier eine Lösung gefunden, die beides kann.

Das Modul wird einfach zwischen den vorhandenen Taster (Schlüsselschalter) und den Taster Eingang am bestehenden Garagentorantrieb geschaltet. Hierfür stellt das Modul ebenfalls einen Taster Eingang und einen potentialfreien Relaisausgang zur Toransteuerung zur Verfügung.

Das MQTT-Smarte Garagentor Modul benötigt dann nur noch eine Spannungsversorgung, die über einen mini USB-B Anschluss am Gerät angeschlossen wird. Für die Spannungsversorgung wird ein externes Stecker Netzteil =5V/500 mA Gleichspannung benötigt.

Das Modul stellt neben einem 433 MHz Empfängermodul auch noch weitere Funktionen zur Verfügung. Um es mit dem lokalen WLAN-Netzwerk zu verbinden, wird temporär ein lokaler Access Point geöffnet über den mittels Webbrowser die Konfiguration für die lokale WLAN-Anbindung, die Anbindung an die BLYNK App und einen MQTT-Broker konfiguriert werden kann.

Auf dem Modul befindet sich noch ein Taster und zwei Status Led‘s.
Über den Taster kann eine Vielzahl an Funktionen des Moduls programmiert oder ausgeführt werden. Zwei Status Led’s signalisieren die Betriebs- und Statuszustände des Moduls.

Wurde das Modul nach Vorgaben montiert und in Betrieb genommen, kann mit der eingebauten Ultraschall Höhenstandsmessung neben der Torstellungen auch erkannt werden, ob sich ein Fahrzeug in der Garage befindet. Besitzen ihre Fahrzeuge zudem unterschiedliche Fahrzeughöhen, können anhand dieser unterschiedlichen Bauhöhen sogar noch die einzelnen Fahrzeuge unterschieden werden.

Darüber hinaus verfügt das Modul über eine Temperatur- und Luftfeuchtigkeitsmessung um die Klimatischen Bedingungen im inneren der Garage zu erfassen und auszuwerten.

Wurde eine Verbindung zu ihren lokalen WLAN hergestellt, können alle Konfigurations- und Betriebsparameter sowohl über das integrierte Webinterface mit einem Browser, die BLYNK App oder per MQTT konfiguriert, angezeigt und bedient werden.

Die Weboberfläche kann über die lokale IP-Adresse in Ihrem Netzwerk, mit einem Webbrowser aufgerufen werden.

Aus Sicherheitsgründen wurde eine Anmeldung an der Weboberfläche des Regensensors eingeführt!
Die Standard Anmeldedaten für die Eingabeaufforderung lauten:

Benutzername: admin
Kennwort: Password

Hinweis:
Wird keine Sicherheitsabfrage für die Weboberfläche gewünscht, lassen Sie das Kennwortfeld einfach leer!

BLYNK Applet QR-Codes:

Version 1

Versionsverlauf:

Intended:

  • Version 1.01
    Keine Anfragen

Released:

  • 19.05.2022  Version 1.00
    Fertigstellung der Version 1.00

MQTT-Zirkulationssteuerung

Techniche Beschreibung MQTT-Zirkulationssteuerung V1.02
Techniche Beschreibung MQTT-Zirkulationssteuerung V1.02
Techniche-Beschreibung-MQTT-Zirkulationssteuerung-V1.02.pdf
Version: V1.02
938.9 KiB
77 Downloads
Details

Das fertige Modul sowie der Source Code zu diesem Projekt kann in unserem Web Shop erworben werden.

Key Features:

  • Schnelle Reaktionsgeschwindigkeit durch DS18B20 Temperatursensoren
  • Kompakte Bauform ©Sonoff TH 16 Schaltmodul
  • Landing Portal für die WIFI und MQTT Konfiguration
  • ©Amazon Alexa Anbindung (Zirkulation Start/Stop) bzw. über entsprechende Routinen
  • Einsparung von Heiz- und elektrischer Energie
  • Kurze Amortisationszeit
  • Maximaler Komfort bei der Warmwasserbereitstellung
  • Minimale Pumpenlaufzeiten, geringer Verschleiß
  • Optionaler Rücklaufsensor für eine noch bessere Effizienz
  • Leichte Integration in eine vorhandene Automatisierung durch MQTT-Client Funktion
  • Weboberfläche zur optimalen Parametrierung auch ohne MQTT
  • Wachsender Funktionsumfang durch Firmware OTA-Updates direkt vom Hersteller

Allgemeines:
Die Zirkulationspumpe in ihrer Trinkwasseranlage sorgt dafür, dass auch an weit entfernten Entnahmestellen jederzeit warmes Wasser zur Verfügung steht, ohne das vorher minutenlang Wasser ungenutzt im Abfluss verschwindet.
Dies geschieht durch eine ständige Zirkulation von heißem Wassers zwischen dem Warmwasserspeicher und der letzten Entnahmestelle ihrer Trinkwasseranlage, was letztendlich zu hohe Wärmeverlusten des Warmwasserspeichers führt. Abgesehen von diesen Wärmeverlusten, wird zusätzlich auch ständig elektrischer Energie für den Betrieb der Zirkulationspumpe benötigt, was über die gesamte Lebensdauer der Anlage mit hohen Kosten zu Buche schlägt.

Um diese Verluste möglichst gering zu halten, ist die üblichste und günstigste Lösung, eine einfache Zeitschaltuhr mit Tagesprogramm. Die Zeitschaltuhr wird in den Stromkreis zwischen Steckdose und Zirkulationspupe geschaltet, um außerhalb der üblichen Entnahmezeiträume die Zirkulationspumpe vom Stromnetz zu trennen.

Der Nachteil bei dieser Lösung liegt jedoch darin, dass bei einem anderen Nutzungsverhalten die Pumpe aus ist und kein warmes Wasser zur Verfügung stellt oder die Pumpe läuft zu Zeiten, obwohl gar kein warmes Wasser benötigt wird. In beiden Fällen geht viel Energie verloren und eine komfortable Bereitstellung von warmem Wasser ist nicht gegeben.

Die Lösung:
Im hier vorgestellten Projekt soll nun gezeigt werden, wie diese Problematik mit einem handelsüblichen ©Sonoff TH10/16 (10/16A) WLAN-Schaltmodul und einem daran angeschlossenen DS18B20 Temperaturfühler einfach und schnell gelöst werden kann.

Das TH10/16-Modul ist eins der wenigen Module der Firma ©Sonoff, das über ein kleines Schaltnetzteil verfügen und nicht wie viele der anderen Module über einen Kapazitives Netzteil. Der große Vorteil hierbei ist hier die Galvanischetrennung zwischen dem 230V Stromnetz und der daran angeschlossenen Elektronik. So ist es möglich über eine kleine vierpolige 2,5 mm Klinkenbuchse Sensoren direkt mit den IO-Pins des ESP8266 Mikrokontroller zu verbinden, ohne dass Netzspannung an den Sensoren anliegt.

Das TH10/16 Modul inklusive eines DS18B20 Temperatursensors kostet kaum mehr als eine elektronische Zeitschaltuhr, bringt aber ein Maximum an Energieeinsparung und das ohne einen Eingriff in die bestehende Hausinstallation vornehmen zu müssen.
Das Modul kann direkt bei Amazon mit kurzen Lieferzeiten bestellt werden.

Das Funktionsprinzip:
Die grundlegende Funktionsweise basiert auf der Erfassung eines Temperaturanstiegs an der Entnahmeleitung des Warmwasserspeichers.

Produktlink für eine einfache und effektive  Sensorbefestigung

Der Wasserhahn fungiert hierbei quasi als Fernbedienung.
Wird für einen kurzen Moment Warmwasser entnommen, z.B. beim Zähneputzen. Registriert der Temperaturfühler an der Entnahmeleitung diesen Temperaturanstieg, die Zirkulationspumpe augenblicklich angefordert und läuft für die Zeitdauer der eingestellten Laufzeit.
Schon kurze Zeit später, steht warmes Wasser am Wasserhahn zur Verfügung.
Um eine schnelle Reaktionszeit zu gewährleisten, sollte der Sensor der Entnahmeleitung möglichst nahe am Warmwasserspeicher angebracht werden, damit das System möglichst schnell auf eine Entnahme und den damit verbundenen Temperaturanstieg reagieren kann.
An den ©Sonnoff kann optional ein weiterer DS18B20 Sensor angeschlossen werden, der die Rücklauftemperatur erfasst. Ist ein zweiter Sensor angeschlossen, wird dieser automatisch von der Firmware erkannt und es erscheinen weitere Eingabefelder in den Einstellungen.
Hier kann dann unter anderem die Rücklauftemperatur eingetragen, bei der die Zirkulationspumpe wieder vorzeitig abgeschaltet werden kann.

Wird kurze Zeit nach einer Zirkulationspumenanforderung eine weitere Entnahme erkannt, greift die Wartezeit. Sie verhindert ein mehrmaliges Einschalten nach einer kürzlichen Entnahmen. Da sich bereits heißes Wasser in den Leitungen befindet, dass sich nur langsam wieder abkühlt.
Die Pumpenlaufzeit sowie die Wartezeit nach einer Zirkulation können über entsprechende Parametrierung in den Einstellungen optimal an die Gegebenheiten angepasst werden.

Findet über einen langen Zeitraum keine Entnahme statt, kann es durch das stehende Wasser in den Rohrleitungen zu einer Verkeimungen kommen (Urlaubszeiträume, Wochenendhäuser usw.).
Um einer Verkeimung vorzubeugen und ein Höchstmaß an Hygiene zu gewährleisten, startet nach einer definierbaren Zeitpanne automatisch eine Hygienezirkulation. Diese wird in regelmäßigen Zeitabständen wiederholt, wenn zwischenzeitlich keine Entnahmen stattgefunden haben.

In eine später geplanten Firmware Versionen ist eine vorausschauende Zirkulationsanforderung geplant. Soll diese Funktion genutzt werden, wird der oben beschriebene, zweite DS18B20 Sensor in der Rücklaufleitung benötigt!

Wenn ein regelmäßiges Verbrauchsverhalten erkannt wird, sollen diese Zeiträume erlernt und die Zirkulation bereits im Voraus startet, um unnötigen Wartezeiten zu minimieren. Hingegen soll während längerer Abwesenheit die Vorausschauenden Zirkulationsläufe automatisch unterbunden werden. Mit der ersten Entnahme nach dieser Pause, startet dann die Vorausschauende Zirkulation wieder automatisch. Sollten sich Verbrauchsverhalten geändert haben, sollen die veralteten Informationen automatisch gelöscht und dann nach und nach durch die neu erlernten Informationen ersetzt werden.

Hardware:
Die Hardware der Zirkulationssteuerung besteht aus einem ©Sonoff TH10/16 mit einem oder optional zwei DS18B20 1-Wire Temperatursensoren. Die beiden Zahlen 10/16 bezieht sich auf die Schaltleistung des Moduls.
Wir raten zum ©Sonoff TH16, er ist kaum teurer als der TH10, bietet jedoch wesentlich mehr Komfort beim Anschluss der Versorgungsspannung und der Pumpe durch seine Klemmanschlüsse. Außerdem bietet er eine ausreichende Reserve bei der Schaltleistung, was die Lebensdauer des Relaisschaltkontaktes ebenfalls wesentlich verlängert.

Die Sensoren werden über eine vier polige 2,5 mm Klinkenbuchse angeschlossen. Über diese Buchse werden zwei GPIO’S und die Versorgungsspannung herausgeführt.

Steckerbelegung ©Sonoff TH10/16

Der Stecker ist ein vierpoliger 2,5mm Klinkenstecker, über den die 1-Wire Temperatursensoren vom Typ DS18B20 mit dem Modul verbunden werden (DQ – GPIO 14, +3,3V und GND). Beim Anschluss von zwei Temperatursensoren, werden diese parallel an die entsprechenden Anschlusspins angeschlossen.
Die Temperatursensoren am Warmwasservorlauf bzw. am Zirkulationsrücklaufrohr, erkennen kleinste Temperaturänderungen und steuern so das Laufverhalten der Zirkulationspumpe.
Da der ©Sonoff nur eine 2,5mm 4-Pin Eingangsbuchse besitzt, gibt es für den Anschluss von zwei Sensor zwei einfach Lösungen. Man schneidet die angespritzten Stecker (soweit vorhanden) ab und verbindet die jeweils gleichen Adern miteinander. Nun kann man entweder einen lötbaren Stecker verwenden, an den die Adern entsprechend der oben beschrieben Anschlussbelegung angelötet werden. Eine Zweite, lötfreie Lösung bietet die Verwendung eines sogenannten Terminal Adapters Klinke 2,5mm 4-Polig mit Schraubklemmen.

Aderfarbcode der DS18B20 Sensoren
DS18B20 Sensoren können zwei Adrig oder auch drei Adrig angeschlossen werden.
Bei einem zweiadrigen Anschluss betreibt man den Sensor im sogenannten parasitären Modus, die benötigte Versorgungsspannung wird über die Sensorleitung eingespeist und über einen kleinen Kondensator im inneren des Sensors gespeichert.

Signal
Beschreibung Klemme des Adapters
GND
(sw/gn)
GND V
Data
(gelb/weis)
DQ – GPIO 14 L
VDD
(rot)
+3,3V Versorgungs-spannung     |
—–
  —

Jeder DS18B20 Temperatursensor besitzt seine eigenen, einzigartigen 64-bit Seriennummer, was den Betrieb mehrere Sensoren an nur einer Datenleitung zu zulässt.

Hardwareanpassung des ©Sonoff

Möchten Sie die Hardware Modifikation und das flashen einer eigenen Firmware selbst vornehmen, wird im folgenden die Vorgehensweise hierfür kurz beschrieben.
Diese Beschreibung soll lediglich eine Hilfestellung geben und erhebt keinen Anspruch auf Vollständigkeit!
Alle selbst durchgeführten Arbeiten erfolgen auf Ihr eigenes Risiko!

An dieser Stelle wird ausdrücklich darauf hingewiesen, dass für alle beschrieben Arbeitsschritte, wie der Austausch des Flashspeichers, die Programmierung einer neuen Firmware, dass ©Sonoff Modul komplett von der 230V Netzspannung getrennt sein muss.
Ansonsten besteht Lebensgefahr durch einen elektrischen Schlag!

Der Flashspeicher, der mit dem das ©Sonoff TH Modul ausgeliefert wird, ist ein Winbond 25Q08FV, der mit einer Größe von 8MBit (1MByte) für diese Anwendung und die „Over the Air“ OTA-Update Funktion etwas zu knapp bemessen ist. Da bei einem OTA Update die Hälfte des Flash Speichers als Ladespeicher benötigt wird. Deshalb wird er durch einen Winbond 25Q32FV mit 32MBit (4MByte) im SOP-8 Gehäuse ausgetauscht, den Sie in unserem Webshop erhalten.

Um erstmalig eine eigene Firmware auf dem ©Sonoff zu installieren, sind auf der Platine bereits alle benötigen Pins herausgeführt.
Für den Flashvorgang wir eine USB-Seriell Modul mit einer VSS von  3,3V benötigt. Vor dem Anschluss des Moduls ist auf die richtige Einstellung der Versorgungsspannung zu achten. Bei vielen dieser Module kann die Versorgungsspannung VSS zwischen 3.3V und 5V umgeschaltet werden. Eine zu hohe Versorgungsspannung führt zur sofortigen Zerstörung des ©Sonoff Moduls.

Der Source Code zu diesem Projekt kann in unserem Web Shop erworben werden.

Möchten Sie den Austausch des Flashspeichers und-/ oder die Programmierung der Firmware nicht selbst durchführen,  übernehmen wir das gerne für Sie.
Sie können dies als Dienstleistung direkt in unserem Webshop beauftragen.

Einrichten der WIFI Verbindung:
Um die Zirkulationssteuerung  in das lokale Netzwerk zu integrieren, wird Anfangs ein eigener AP geöffnet. Verbindet man sich mit diesem AP und öffnet anschließend im Webbrowser die IP-Adresse 192.168.4.1 gelangt man in das Konfigurationsportal der Zirkulationssteuerung.
Hier können dann alle notwendigen Einstellungen für das lokale Netzwerk (SSID, Kennwort) und die die Verbindung zum MQTT-Broker (Server IP, Benutzername, Kennwort und Port) vorgenommen werden.
Konnte anschließend mit den eingegebenen Informationen eine Verbindung zum lokalen Netzwerk hergestellt werden, sind alle Daten und Konfigurationen der Steuerung, neben dem MQTT-Broker auch über das integriertes Web-Interface erreichbar.

Einrichten einer Amazon Alexa Verbindung:
Die Zirkulationssteuerung kann über ein Sprach Kommando mit Alexa Geräten ein bzw. ausgeschaltet werden. Wurde die Zirkulationssteuerung mit dem ein Kommando aktiviert, läuft genau wie bei der Entnahmeerkennung die eingestellte Pumpenlaufzeit ab, bevor die Zirkulationspumpe automatisch wieder deaktiviert wird.
Um die Zirkulationssteuerung über Alexa ansteuern zu können, vergeben Sie zuerst den Alexa Invocation (Aufrufnamen) im Webbrowser oder per MQTT. Nach der Eingabe wird die Zirkulationssteuerung neu gestartet und ist bereit für die Kommunikation mit Alexa Geräten.
Stellen Sie vor der Suche von neuen Geräten in ihrer Alexa App sicher, dass ihre Alexa mit dem 2,4 MHz Netzwerk ihres Routers verbunden ist, da vom ESP8266 nur dieses Trägerfrequenz unterstützt wird.
Wählen sie in der Alexa App im Reiter Geräte, Gerät hinzufügen aus. Anschließend suchen sie nach Sonstige Geräte und starten sie die Suche. Nach dem die Zirkulationssteuerung erkannt wurde, kann diese mit den Kommando „Gerätename ein / aus“ angesteuert werden.

Ansicht im IO-Broker:

Die Ansicht zeigt alle verfügbaren Parameter der Zirkulationssteuerung.

Beschreibung der Notes

Note Name Beschreibung Lesen / Schreiben
INFO/Hostname Bezeichnung des Moduls Read
INFO/Port Webserver Por Read
INFO/IPAdress Aktuelle IP-Adresse Read
INFO/Modul WLAN-Modul Read
INFO/RestartReason Beschreibung des letzten Neustart Ereignisses Read
INFO/Version Aktuelle Firmware Version Read
SETTINGS/AlexaInvocationName Alexa Aufrufname (max. 30 Zeichen) Read / Write
SETTINGS/BackflowTemp Rücklauftemperatur Abschaltwert (°C) Read / Write
SETTINGS/CHECKUPDATE Neustes Firmware Update laden (set true) Read / Write
SETTINGS/GradientIntTime Garatientenzeit ab ersten erkannten Temperaturanstieg
(sek.)
Read / Write
SETTINGS/LegionellaWaitTime Hygienezirkulationszeit
(Std.)
Read / Write
SETTINGS/PumpRunTime Pumpenlaufzeit (min.) Read / Write
SETTINGS/RelaisDirection Wirkrichtung des Realis Read / Write
SETTINGS/StartPump Pumpe manuell starten (set true) Read / Write
SETTINGS/StopPump Pumpe manuell stop
(set true)
Read / Write
SETTINGS/TempGradient Temperaturgradient innerhalb der (°C)
GradientIntTime
Read / Write
BackflowTemperatur Rücklauf Temperatur DS18B20 (°C) Read
PreflowTemperature Vorlauf Temperatur DS18B20 (°C) Read
PumpRequest Zirkulationspume aktiv
(on/off)
Read
RelPinState Status Relais Pin
(high/low)
Read
RemainingLegionellaTime Abgelaufene Hygiene Zirkulations Wartezeit
(Std.)
Read
RemainingPumpRunTime Abgelaufene Zirkulationszeit
(Min.)
Read
RemainingPumpWaitTime Abgelaufene Wartezeit
(Min.)
Read
Uptime Zeit seit dem letzten Neustart Read
Vcc Prozessor Core Spannung Read
WIFI-Quality
WIFI-Qualität in % Read

Ansicht im Webbrowser:

Analog zur Ansicht im Broker stehen alle Parameter auch im Webbrowser Interface zur Verfügung.

Aus Sicherheitsgründen wurde eine Anmeldung an der Weboberfläche des Regensensors eingeführt!
Die Standard Anmeldedaten für die Eingabeaufforderung lauten:

Benutzername: admin
Kennwort: Password

Hinweis:
Wird keine Sicherheitsabfrage für die Weboberfläche gewünscht, lassen Sie das Kennwortfeld einfach leer!

Versionsverlauf:

Intended:

  • Hard.Firmware Version 1.03
    Neu Funktionen für das vorausschauende Entnahmeverhalten.

Released:

  • 02.08.2022  Version 1.02
    WIFI-Quality Anzeige in MQTT und Webinterface eingebaut
    Webpage Kennwortabfrage eingebaut, bei leerem Kennwort erfolgt keine Abfrage.
    Uptime Fehlerbeseitigung.
  • 22.04.2022  Version 1.01
    Fehlerbeseitigung bei der Übertragung der MQTT Daten. Updates bei der Genauigkeit der Messwerte verbessert.
    Bibliotheksupdate durchgeführt, neues Anmeldeportal.
  • 29.11.2021 Version 1.00
    Integration für Ansteuerung mit ©Amazon Alexa

MQTT- Kapazitiver Regensensor

Kapazitiver Regensensor MQTT
Kapazitiver Regensensor MQTT
Kapazitiver_Regensensor_MQTT.zip
3.0 MiB
137 Downloads
Details

Der Source Code für dieses Projekt kann in unserem Web Shop erworben werden.

Allgemeines

Anfang 2021, wurde von uns eine IoT-Wetterstation für eine Projekt in Südtirol entwickelt. Ein Teil der Aufgabenstellung bestand darin, einen kapazitiv arbeitenden Regensensor zu integrieren.
Nach Abschluss der Entwicklung, blieben aus dem Prototyping noch einige der Sensor Platinen übrig, daras entstand dann dieses Projekt.
Um dem interessierten Kunden das Funktionsprinzip näher zu bringen und eine Anleitung für den grundlegenden Aufbau eines kapazitiven Regensensors anzubieten, wurde der folgenden Artikel auf unserem Blog dazu veröffentlicht: Kapazitiver Regensensor.

Da die Anfragen für einen solchen Sensor sehr groß waren, haben wir uns entschlossen ein kleine Auswerte Platine zu entwickeln, die mit einem ESP8266 (WEMOS D1 mini) ausgestattet ist und die Sensordaten per Webserver und MQTT zur Verfügung stellt.
Zusätzlich befindet sich auf der Auswerte Platine ein potentialfreier Relais Schaltkontakt, der es erlaubt bei einer Regenerkennung auch direkt einen externen Schaltvorgang auszulösen. Um z.B. eine Markise ein zu fahren.

Aufbau Hardware

Das Regensensor Modul besteh aus drei Einzel Komponenten

  • Kapazitive Sensorplatine
    Die Funktionsweise der Sensorplatine wird bereits im Beitrag Kapazitiver Regensensor ausführlich beschrieben, weshalb wir hier nicht mehr näher darauf eingehen werden.
  • Auswerteeinheit
    Die Platine der Auswerteeinheit bildet das Gegenstück zur Sensorplatine. Die beiden Platinen besitzen dieselben Abmessungen, was bei der Befestigung z.B. in einem geeigneten Gehäuse wie einer Verteilerdose von großem Vorteil ist. Die Bohrlöcher für die Befestigung der Auswerteeinheit werden somit komplett von der aufgeklebten Sensorplatine überdeckt und bietet so einen perfekten Korrosionsschutz.
    Auf der Platine befindet sich ein DS18B20 Temperatursensor, der durch seine Position die Gehäuseinnentemperatur und gleichzeitig die Temperatur kurz unterhalb der Sensorplatine erfasst. Auf diese Weise kann in den Wintermonaten verhindert werden, dass sich Forst auf dem Sensor bilden kann. Bei einem Regenereignis wird die Sensorheizung ebenfalls automatisch aktiviert, um ein schnelleres Abtrocknen der Sensoroberfläche und somit eine schnellere Reaktionszeit des Sensors nach einem Regenereignisses sicher zu stellen. Die Maximale Sensor Temperatur wird über den Temperatursensor geregelt, das spart Energie und erhöht die Lebensdauer des Regensensors.
    Befindet sich kein Feuchtigkeit, Eis oder Kondensat auf der Sensoroberfläche, das durch die Erwärmung verdampfen kann, kommt es auch nicht zu einer Abkühlung durch Verdunstung und der Sensor würde sich immer mehr aufheizen.
    Diese Regelung arbeitet mittels PWM (Pulsweitenmodulation), mit einer Frequenz von ca. 100Hz. Wurde Regen detektiert, findet im Temperaturbereich von 35 – 50°C eine stetige Regelung statt.
    Unterschreitet die Temperatur 4 °C, wird die Sensor Heizung ebenfalls aktiviert um Frostbildung auf der Sensoroberfläche zu verhindern. Hierbei wird ebenfalls die Leistung der Sensorheizung in Abhängig der gemessenen Temperatur geregelt. Der Regelbereich liegt hier bei zwischen 4°C und -6°C, was dann einer Heizleistung von 100 % entspricht.
    Um eine Betauung der Sensoroberfläche zu verhindern, .z.B. bei Morgentau oder Nebelbildung, wird die die kompensierte Sensorkapazität als Messgröße herangezogen. Überschreitet diese einen Wert von 5 pF, wird die Sensorheizung mit einer Leistung von 20 % betrieben, um diesen Effekt zu eliminieren. Die Maximale Sensorheizleistung kann über MQTT oder das Webfrondend in einem Bereich von 1 – 100% eingestellt und somit begrenz werden. Die Spannungsversorgung der Sensorheizung wird über eine 500mA selbstrückstellende Sicherung geschützt. Der WMOS D1 mini besitzt eine eigene selbstrückstellende Sicherung. Die Spannungsversorgung erfolgt nicht über die Micro USB-Buchse, sondern über die zwei auf der Platine herausgeführten Lötpunkte *5V und GND. Nähere Informationen hierzu erhalten Sie in der Dokumentation, die sie oben im Beitrag kostenlos herunterladen können.

ACHTUNG:
Auf der Platine ist kein Verpolungsschutz vorhanden! Ein falscher Anschluss der Spannungsversorgung führt zu einer Zerstörung der elektronischen Bauteile.
Das Netzteil benötigt eine stabilisierte Ausgangsspannung von 5V= und  mindestens 1A  Ausgangs Strom, um die Auswerteeinheit und die Sensor Heizung sicher zu betreiben.

  • Auf der Platine der Auswerteeinheit befindet sich auch noch der hochgenaue Langzeit Timer 7555, der hier als 3V Variante bestückt ist und die Kapazitätsfrequenzumsetzung durchführt. Als letztes Bauteil ist nun noch das Read Relais zu nennen, dass einen potentialfreien Ausgangskontakt zur Verfügung stellt und bei einem Regenereignis ein externes Schaltsignal zur Verfügung stellt.
    Der ungenutzte Raum der Platine wurde mit einem 2,54mm Lochraster versehen, das noch genügend Raum für eigenen Erweiterungen und Ideen bietet.
  • WEMOS D1 mini pro
    Das Schaltungsdesigne  des WEMOS D1 mini Board der Auswerteeinheit musste ebenfalls modifiziert werden (Nähere Informationen hierzu finden Sie in der Technischen Beschreibung).
    Es besitz 4 MB Flash, was ausreichend Platz für zukünftige Erweiterungen oder eigenen Ideeen bereithält. Das Modul wird mit der aktuellen Firmware ausgeliefert, kann aber jeder Zeit über ein Internetverbindung OTA auf die neueste Firmware Versionen upgedatet werden.
    Alle Anschlüsse des WEMOS sind nochmals separat auf dem Lochraster (Stiftleiste 2,54mm) herausgeführt.

Aufbau der Firmware

Um das Regensensormodul in das lokale Netzwerk zu integrieren, wird Anfangs ein eigener AP geöffnet. Verbindet man sich mit diesem AP und öffnet man anschließend im Webbrowser die IP-Adresse 192.168.4.1 gelangt man in das Konfigurationsportal des Regensensor Moduls.
Hier können dann alle notwendigen Einstellungen für das lokale Netzwerk (SSID, Kennwort) und die die Verbindung zum MQTT-Broker (Server IP, Benutzername, Kennwort und Port) vorgenommen werden.
Konnte anschließend mit den eingegebenen Informationen eine Verbindung zum lokalen Netzwerk hergestellt werden, sind alle Daten und Konfigurationen des Sensors wie Einschaltschwellen, die Schalthysterese usw. neben dem MQTT-Broker auch über das integriertes Web-Interface erreichbar.

Die Kapazität des Sensors steht als Rohwert vom Sensor zur Verfügung. Für die Auswertung der Schaltschwelle, wird der kompensierte (kalibrierte) Sensorwert herangezogen.
Um nicht mit dem absoluten Kapazitätswert des Sensors arbeiten zu müssen, kann der Sensorwert bei Trockenheit selbst definiert werden. Hierfür wird eine Kalibrierung durchgeführt. So dass der Kompensierte Sensorwert dann bei Trockenwetter null hat.
Wandert der Wert um 10 pF in den negativen Bereich führt das Sensormodul einen automatischen Nullabgleich durch.

Übertragung der Werte per MQTT

Wird der Regensensor neu gestartet, werden alle Topics der Settings subscribed und anschließend alle Topics einmalig published.
Danach wird die publishing Routine in der Firmware fix alle 10 Sekunden aufgerufen und dabei nur die Werte published, die eine Änderung seit dem letzten publishing Zyklus erfahren haben.
Dies geschieht um den Traffic möglichst gering zu halten.

Hier eine Übersicht der benötigten Werteänderung für eine erneute MQTT Übertragung:

  • curtemperature               >= 1.0 °C
  • curfrequency                    >= 50.0 Hz
  • curcapacity                        >= 3.0 pF
  • compcapacity                    >= 3.0 pF
  • calcapacity                         >=1.0 pF
  • precipitation                      >= 0.01 l/m2
  • windspeed                         >= 0.5 m/s
  • heatsinkpower                 >= 0.01
  • rain                                      true/false;
  • Uptime / Core Vcc           >= 0.01 V

Die CurCapacity und damit auch Comp.Cap. schwankt natürlich auch ohne Regen immer ein wenig, abhängig von der Luftfeuchtigkeit, Nebel oder ähnlichem. Deshalb wurde für die Auswertung der Regenerkennung ein Schwellwert definiert.

Berechnung der Niederschlagsmenge

Eine neue, aber noch experimentelle Funktion ist eine Berechnung der Niederschlagsmenge anhand der Sensorkapazität und der Dauer des Regenereignisses. Hierfür wird der Wert der kalibrierten Sensorkapazität alle 30 Sekunden erfasst und in ein Array gespeichert. nach 15 Minuten, wird aus diesen Werten der Mittelwert gebildet. Die Summe der vier Viertelstundenwerten ergibt dann den Stundenwert, der nach der folgenden Funktion in eine Niederschlagsmenge (l/m2) umgerechnet wird und als 24 Stundenwerte ebenfalls in ein Array mit den Tageswerten geschrieben wird.

Diese Funktion berechnet sich nach der Formel:

float y = 3e-06 * sq(x) – 0.0004 * x + 0.0004;

Windgeschwindigkeitsmessung mit einem Anemometer

Ab Version 1.05 besteht die Möglichkeit ein Anemometer für die Ermittlung der Windgeschwindigkeit an die Auswerteeinheit anzuschließen. Der neue Sensor wird nach dem ersten Impuls automatisch von der Firmware erkannt, anschließend werden weitere Konfigurations- und Anzeigewerte per MQTT und im Web Frontend zur Verfügung gestellt.

Das Anemometer muss über einen potentialfreien Ausgangskontakt verfügen (Sensor mit Reed Ausgangskontakt). Die Erweiterung des Auswertemoduls um diese Funktion gestaltet sich recht einfach, es werden lediglich die folgenden Bauteile benötigt.

  • Ein Widerstand 10 KOhm 1/4 W, print
  • Ein Keramikkondensator 100 nF, print
  • Ggf. eine Schraubklemme 2-polig, Raster 5,08 mm für den Sensoranschluss.

Das folgende Bild zeigt die einfache Schaltung, die für den  Anschluss eines Anemometers an der Auswerteeinheit nachgerüstet werden muss. Die beiden Verbindungsleitungen des Anemometers werden einmal mit den 3.3V und dem GPIO 14 (D5) des WEMOS D1 mini verbunden. Am GPIO14 (D5) wird dann nur noch der Widerstand (10K) und der Keramikkondensator (100nF) gegen Masse angeschlossen.

Es werden viele verschieden Anemometer mit Reed Schaltkontakten im Handel angeboten. Diese unterscheiden sich nicht nur durch verschieden Bauformen (Diameter) sondern auch durch die Anzahl der Impulse pro Umdrehung.

Deshalb stehen nach dem Anschluss eines Anemometers zwei weitere Eingabeparameter im MQTT-Broker und dem Web Frontend zur Verfügung, die eine individuelle Konfiguration des eingesetzten Anemometers zulassen. Der erste Parameter gibt die Anzahl der Impulse pro Umdrehung an. Wieviel Impulse pro Umdrehung der Sensor liefert, kann leicht mit einem einfachen Multimeter oder einem Durchgangsprüfer ermittelt werden, indem  man das Windrad einmal um seine eigene Achse dreht und das Schließen des Kontaktes abzählt.
Der zweite Parameter gibt die Windgeschwindigkeit in km/h, wenn sich das Windrad innerhalb einer Sekunde einmal um die eigene Achse dreht. Lesen Sie hierfür in den Angaben des Herstellers nach.

Verwendet werden kann z.B. ein Anemometer der Firma TOOGOO mit der Typenbezeichnung „WH-SP-WS01 Anemometer“.
Für dieses Anemometer sind die Konfigurationseinstellungen bereits in der Firmware eingetragen.

  • Pulse/Umdrehung = 1 Puls
  • Geschwindigkeit in km/h bei 1U/s = 2,4 km/h

Ansicht im IO-Broker:

Die Ansicht zeigt alle verfügbaren Parameter des Sensormoduls.

Beschreibung der Notes

Note Name Beschreibung Lesen / Schreiben
INFO/Hostname Bezeichnung des Moduls Read
INFO/IPAdress Aktuelle IP-Adresse Read
INFO/Modul WLAN-Modul Read
INFO/Port Webserver Port Read
INFO/RestartReason Beschreibung des letzten Neustart Ereignisses Read
INFO/Version Aktuelle Firmware Version Read
SETTINGS/Calibrate Sensorkalibrierung (set true) Read / Write
SETTINGS/CheckUpdate Neustes Firmware Update laden (set true) Read / Write
SETTINGS/HeatsinkMaxPower
(ab Version x.04)
Maximale Sensor Heizleistung  (%) Read / Write
SETTINGS/HystCapacity Schalthysterese Kapazitätswert (pF) Read / Write
SETTINGS/LightRain Schaltschwelle für die Textanzeige Light Rain (pF) Read / Write
SETTINGS/ModerateRain Schaltschwelle für die Textanzeige Moderate Rain (pF) Read / Write
SETTINGS/ModerateRain Schaltschwelle für die Textanzeige Normal Rain (pF) Read / Write
SETTINGS/ NormalRain Wirkrichtung (direct / inverse) Read / Write
SETTINGS/TrshCapacity Schaltschwelle für die Regenerkennung (pF) Read / Write
SETTINGS/WSPulsNumber (optional)
Pulse/Umdrehung
P/U
Read / Write
SETTINGS/WSWindSpeed (optional) Geschwindigkeit in (km/h bei 1U/s) Read / Write
Alive
(ab Version x.05)
Online Status des Moduls (true/false) Read
CalCapacity Kapazitäts- Kompensationswert (pF) Read
CompCapacity Relativer (kompensierter Kapazitätswert (pF) Read
CurCapacity Aktuelle Sensor Kapazität (absolut Wert (pF) Read
CurFrequency Aktuelle Sensorfrequenz (Hz) Read
HeatiSinkPower
(ab Version x.04)
Aktuelle Leistung der Sensorheizung (%) Read
Precipitation
(ab Version x.05)
Niederschalgsmenge l/m2 (experimentell) Read
Rain Status der Regenerkennung (true/false) Read
RainState Status der Regenerkennung (Textform)
CompCapacity > TrshCapacity
= „dry“
CompCapacity < 150 = „light rain“
CompCapacity < 350 = „moderate rain “
CompCapacity < 700 = „normaly rain“
> 700= „heavy rain“
Read
Temperature DS18B20 Gehäuse/Sensor Temperatursensor Wert (°C) Read
Uptime Zeit seit dem letzten Neustart Read
Vcc Prozessor Core Spannung Read
WindSpeed
(optional)
Windgeschwindigkeit (m/s) Read

Einfaches Blockly Skript für den IO-Broker

In diesem Abschnitt soll Beispielhaft die Integration einer Markisen Ansteuerung mit einem Blockly Skript für den IO-Broker gezeigt werden.
Die Variable „Rain-Trigger“ ist eine User definierte boolesche Variable im Broker und dient hier als Trigger für das Umschalten zwischen den Zuständen der Regenerkennung und der Regenende Erkennung.

In diesem Skript wird bei einer Regenerkennung ein kurzer „Close“ Befehl an einen Shelly 2.5 Rollladenschalter gesendet, eine Bedienung durch den Nutzer bleibt somit jederzeit weiterhin möglich.

Ansicht im Webbrowser:

Analog zur Ansicht im Broker stehen alle Parameter auch im Webbrowser Interface zur Verfügung.

Ab Firmware Version x.08 wurde aus Sicherheitsgründen eine Anmeldung am Webinterface eingeführt!

Die Standard Anmeldedaten für die Eingabeaufforderung lauten:

Benutzername: admin
Kennwort: Password

Hinweis:
Wird keine Sicherheitsabfrage für die Weboberfläche gewünscht, lassen Sie das Kennwortfeld einfach leer!

Montage Vorschlag:

Das Regensensor Modul sollte in einem Winkel von ca. 30° mountiert werden, damit der auftreffende Regen die Sensoroberfläche nur benetzt und abfließen kann.  Das Modul lässt sich leicht in eine Hensel Verteilerdose (ohne Klemmen) mit den Abmessungen 104 mm x 104 mm, vom Typ DK 0200 G / IP66 einbauen.

Hinweis:
Die oben genannte Abzweigdose besitzt keine Einführungen oder Würgenippel. Die Einführungsöffnungen sind mit einer Gummimembrane ausgestattet, die leicht durchstochen werden kann und das Kabel anschließend wieder Wasserdicht umschließt.

Im ersten Schritt werden die Befestigungslöcher für vier Distanzhülsen M3x8mm auf der Deckel Oberseite angezeichnet und mit einem 3,2mm Bohrer gebohrt.
Dann werden die Löcher mit einem Senker soweit angesenkt, dass die M3x4mm Senkkopfschrauben plan in den Senkungen verschwinden.

Anschließend wird mit einem Fräser oder einem Forstner Bohrer ein ca. 25 mm großes Loch für den Sensorstecker und den DS18B20 Sensor ausgemessen und gebohrt.

Nun werden die Distanzhülsen M3x6mm auf der Innenseite des Deckels befestigt und die Auswerteeinheit so montiert, dass die Buchsen Leiste und der Sensor im Sensorbohrloch platziert sind.

Danach kann der Sensor mit Silikon auf den Deckel aufgeklebt werden.

Achten sie beim Aufbringen des Sensors darauf, dass die Stiftleiste richtig in der zehn Poligen Buchsen Leiste steckt, so dass nach dem aufbringen der Sensorplatine auch alle vier Senkkopfschrauben verdeckt werden.

Versionsverlauf:

Intended:

  • Hard.Firmware Version 2.00
    Integration einer LUX-Messung mit einem VEML7700 (I2C).

Released:

  • 23.08.2022 Alle HW Versionen
    Firmware Version 1.09
    – Fehler bei der Uptime behoben und Uptime Library eingebunden.
    – Webserver Port in MQTT/Info eingefügt.
    – Genauigkeit bei Chart und der Durchschnittlichen Regenmenge verbessert.
    – Anzeige der Core VDD im Web Frontend.
  • 29.07.2022 Alle HW Versionen
    Firmware Version 1.08
    Anzeige MQTT/Info/Port des Webservers.
    Wird das Webserver Kennwort leer gelassen, erscheint kein Anmeldedialog im Webbrowser.
    Fehlerbeseitigung Überlauf bei der Uptime Anzeige.
  • 15.07.2022 Alle HW Versionen
    Firmware Version 1.08
    Erweiterung der Parametrierung für die Textausgabe des Regenstatus.
    Erweiterung WIFI-Manager, um den Regensensor mit einem Port forwarding im Router auch aus dem Internet erreichen zu können, kann nun der Webserver Port frei konfiguriert werden.
    Zusätzlich wird nun ein Anmeldename und ein Kennwort beim Aufrufen der Webseite abgefragt, um die Sicherheit zu erhöhen.
  • 25.04.2022 Alle HW Versionen
    Firmware Version 1.07
    Aktualisierung der Arduino Librarys, neues Anmeldeportal.
  • 04.02.2022 Alle HW Versionen
    Firmware Version 1.06
    Optimierung bei der Übertragung der MQTT Daten. Updates bei der Genauigkeit der Messwerte verbessert.
  • 28.08.2021 Alle HW Versionen
    Firmware Version 1.05
    Integration eines Anemometers zur Ermittlung der Windgeschwindigkeit.
    Precipitation Wert (Experimentelle Niederschlagsmenge) Errechnung über Viertelstunden Mittelwerte der Comp. Kapazität in l/m2, in MQTT und im Web Browser eingerichtet. Niederschlags Chart Demo Version 24h.
    LWT / Alive – Last Will Testament Onlinestatus des Sensormoduls in MQTT integriert. Reduzierung des MQTT Datenverkehrs.
  • 29.07.2021 Alle HW Versionen
    Firmware Version 1.04
    – Sensor Temperatursteuerung, Regelung der Leistung per PWM
    und Option zur Begrenzung der maximalen Heizleistung.
    – Temperaturregelung der Sensorheizung für Frostschutz und
    Maximaltemperatur.
    – Betauungsschutzfunktion ab einer Kompensierten
    Sensorkapazität von 5 PF, Heizleistung Sensorheizung auf 20%
  • 16.07.2021: Alle HW Versionen
    Firmware Version 1.03
    – Überarbeitung im Dialog Update, Reset und Restart im
    Web Frontend vorgenommen.
    – Regen Status als Klartextausgabe.
  • 03.07.2021: Alle HW Versionen
    Firmware Version 1.02
    – Anzeige im MQTT – Broker erweitert.
  • 04.06.2021: Alle HW Versionen
    Firmware Version 1.01
    – In dieser Version wurde eine Fehlerbeseitigung im
    Web Frontend vorgenommen, es betrifft die Umschaltung
    der Wirkrichtung des potentialfreien Relais Ausgangs.

IOT – Wetterstation

Allgemeines

Für die Erfassung und Verteilung aktueller lokaler Wetterdaten wurde im Zuge eines Kundenauftrags diese IoT-Wetterstation mit integrierter Ethernet Schnittstelle auf Basis eines ESP32 entwickelt.

Alternativ kann auch auf die Anbindung über die Ethernet Schnittstelle verzichtet werden und die Daten könnten stattdessen per WLAN Verbindung über den Mikrokontroller ESP32 versendet werden.

Sie erfasst die folgenden Wetterdaten und sendet diese zyklisch per UDP-Broadcast über den Port 8888 in das lokale Netzwerk. Auch hier wäre der Versand per MQTT an einen Broker denkbar.

Wetterdaten:
  • Aktuelle Windgeschwindigkeit
  • Aktuelle Windrichtung (0 – 360 °)
  • Windrichtungswert als Windrichtungsindex
  • Aktuelle Außen- und Modultemperatur
  • Aktuelle Daten vom Kapazitiven Regensensor
  • Aktuellen LUX Wert, RAW Index und den Weiß Wert.
  • Regen Bit der Regenerkennung
  • Dämmerungsbit der Dämmerungserkennung
  • Windmax Bit der Windmax. Erkennung

Hardwareaufbau

Die Platine der Wetterstation hat eine Abmessung von 80 x 120 mm.
Sie besitzt Schraubklemmen zum Verbinden der Eingangssignale und eine RJ45 Buchse zum Anschluss der Netzwerkverbindung über Ethernet, unten rechts im Bild.

IoT-Wetterstation Platine
IoT-Wetterstation Lux- und Kapazitiver Regensensor

Die Platine der verfügt über folgende Anschlüsse:

  • Einen Programmieranschluss für Firmware Updates
  • Einen RJ45 Netzwerkanschluss
  • Schraubanschlüsse für die Sensoren

Die ersten beiden Klemmanschlüsse dienen dem Anschluss der Versorgungsspannung, diese kann in einem Bereich von 7 – 27 V= liegen.

Der nächste Anschluss wurde für einen potentialfreien Eingangskontakt vorgesehen, an den z.B. ein Regenmengenmesser mit Read Kontakt angeschlossen werden könnte (optional).

Der nächste Klemmenblock stellen zwei stabilisierte Ausgangsspannung 3.3V und 5.0 V zur Verfügung. Hiermit können Beispielsweise externe Sensoren mit Spannung versorgt werden. Die nächsten beiden Klemmen GND und 1-Wire dienen zum Anschluss von externen 1-Wire Sensoren. In diesem Projekt wird hierrüber Außentemperatur mit einem 1-Wire Sensors vom Typ DS18B20 gemessen.

Die Letzten Klemmen sind Anschlussklemmen für zwei analogen Eingangskanäle. Diese könne je nach Bedarf wahlweise 0 – 10 V oder 0 – 20 mA Eingangssignale verarbeiten.

Am ersten Analogeingang U-in1 und GND kann z.B. der Sensor zur Messung der Windgeschwindigkeit und am zweiten Analogeingang U-in2 und GND der Sensor für die Windrichtung angeschlossen werden.

Eine Kalibration der Messbereiche für die beiden Analogeneingänge U-in / I-in, erfolgt für jeden Kanal getrennt, mit je zwei Spindelpotentiometer.

Hierbei wird zuerst der Spannungseingang abgeglichen und das entsprechende Spindelpotentiometer zunächst gegen den Uhrzeiger auf seine linke Endposition gestellt.

Nach dem Anlegen einer Spannung von 10.0 V wird das Spindelpotentiometer solange verstellt, bis am entsprechenden Ausgangspin, Kanal 1 = Pin1 und Kanal 2 = Pin 7, des LM358 eine Ausgangsspannung von 3.0 V gemessen wird.

Anschließend wird der Spannungseingang getrennt und derselbe Vorgang mit dem Stromeingang durchgeführt. So können beide Eingangskanäle auf ihren Endbereich kalibriert werden.

Kanal 1:

  1. I – Abgleich 3.0V = 20 mA, CH1 Pin1 am LM358M
  2. U – Abgleich 3.0V = 10 V, CH1 Pin1 am LM358M

Kanal 2:

  1. I – Abgleich 3.0V = 20 mA, CH2 Pin 7 am LM358M
  2. U – Abgleich 3.0V = 10 V, CH2 Pin 7 am LM358M

Alle Eingänge der Wetterstation sind gegen ESD geschützt, Die beiden Analogeingänge haben zusätzlich noch einen Verpolungsschutz und eine Einganswert Limitierung um bei einem zu hohen Spannungs- bzw. Stromwerts am Eingang den Mikrokontroller nicht zu zerstören.

Der Regensensor basiert auf einer Kapazitätsmessung.

Siehe hierzu:
Kapazitiver Regensensor mit einem ESP8266 / Arduino

Die ermittelte Kapazität wird über einen NE555 in ein digitales Frequenzsignal gewandelt und an den Mikrokontroller weitergeleitet, der dann die Berechnung und Auswertung übernimmt.

Es sind zwei Temperaturmessung vorhanden, die über den 1-Wire Bus erfasst und ausgewertet werden. Als Sensoren werden DS18B20 eingesetzt, der erste befindet sich direkt auf der Platine als TO-3 und dient zur Ermittlung der Gehäuseinnentemperatur, der zweite Sensor ist ein Wasserdichter Edelstahlsensor der in drei Leiter Technik über die Klemmen des 1-Wire Eingangs angeschlossen ist und die Außentemperatur misst.

Zur Erfassung des LUX, RAW und Weißwerts wurde eine VEML7700 des Hersteller Vishay verbaut. Dieser ist über eine I2C Schnittstelle an den Mikrokontroller angebunden und kann mit einer entsprechenden Parametrierung Lux Werte bis zu 150 Klx genau messen.

Das Herzstück der Schaltung ist ein ESP32 Mikrokontroller mit 4 MB Flashspeicher der Firma Espressif. Dieser Kontroller verfügt über ein WLAN und Bluetooth Radio, das jedoch in diesem Projekt nicht zum Einsatz kommt, da der Datenaustausch über Ethernet erfolgt.

Als Schnittstelle zum Ethernet ist ein USR-ES01 Modul mit W5500 Chipsatz vorhanden, die Anbindung an den Mikrokontroller erfolgt per SPI-Bus.

Die Spannungsversorgung für die Wetterstation könnte z.B. auch direkt über das Netzwerkkabel, per Power Over Ethernet kurz PoE erfolgen. Hierfür könnte ein PoE-Splitter, der eine stabilisierte Gleichspannung von 12V aus dem Signalkabel ausschleust, in das Gehäuse der Wetterstation eingebracht werden. Auf diese Weise könnte dann auch die Spannungsversorgung für den Wind- und Windrichtungssensor erfolgen.

Firmware Update

Um ein neues Firmware Update in den ESP32 Mikrokontroller zu laden, verfügt die Platine über einen zweireihigen, acht poligen Steckverbinder, an den der passende USB-Programmieradapter angesteckt werden kann, um eine neue Firmware in den Mikrokontroller der Wetterstation zu übertragen.

Bei einer Verbindung per WLAN, könnte ein Update aber auch per OTA (Over the air) erfolgen. Diese Option seht leider bei einer Anbindung per Ethernet nicht zur Verfügung.

Der USB-Programmieradapter muss dabei so aufgesteckt werden, dass er von der Grundplatine weg zeigt. Ein Vertauschen oder falsches aufstecken führt zur sofortigen Zerstörung der Wetterstation!

Das Herunterladen einer neuen Firmware darf deshalb nur von einer entsprechend eingewiesenen Person oder einem Fachmann durchgeführt werden!

Für den Programmiervorgang muss die Spannungsversorgung zur Wetterstation unterbrochen sein und die Netzwerkverbindung getrennt werden! Des Weiteren kann es beim Flashvorgang zu Problemen kommen, wenn an den analogen Eingangskanälen noch Sensoren angeklemmt sind. Deshalb wird auch hier empfohlen dies vor dem Flashvorgang zu entfernen!

Pressure Sensor

Technische Beschreibung Pressure Sensor
Technische Beschreibung Pressure Sensor
Technische-Beschreibung-Pressure-Sensor.pdf
1.3 MiB
130 Downloads
Details

Key Features:

  • Weiter Eingangsspannungsbereich von 8 – 27V
  • Konfiguration aller Modulparameter direkt am Pressure Sensor Modul möglich
  • OLED-Display für die Anzeige der Messwerte und der Menüfunktionen
  • Bedienung über einen Drehwahlschalter oder einen Taster
  • Drei konfigurierbare potentialfreie Ausgangskontakte für das Über- und Unterschreiten einer einstellbaren Druckschwelle, sowie eines Sensorfehlers
  • Für jedes Relais kann die Ruhelage NO (normally open) oder NC (normally closed) separat festgelegt werden
  • Werte- und Fehleranzeige im Sensor Sensordisplay
  • Werte- und Fehleranzeige über die Blynk App und ein Web Interface zugänglich
  • Messwerte- und Statusmeldungen im Textformat über integrierte Micro USB-Schnittstelle (seriell Port)
  • Vielseitige auch für beliebige andere Druckmessaufgabe eingesetzt Messung
  • Zwei verschiedene Messmethoden, Messung des absoluten oder des relativen Drucks
  • Manuelle und automatische Kalibrierung bei der relativen Druckmessung
  • Spezielle Funktion für Druckschlauchmessungen, automatischen Differenzdruckabgleich
  • Teilbares System, dass aus einem wechselbaren Drucksensor, dem eigentlichen Auswertemodul
  • Menügeführte kundenspezifisch Sensoranpassung.
  • Aktualisierung der Firmware mittels OTA

Allgemeines

Die hier beschriebene Druckmessung entstand aus dem Projekt Timekeeper, dass auf Anfrage für eine Zeitmessung zu Trainingszwecke für eine Gleichmäßigkeitsprüfung durchgeführt wurde.
Als der Timekeeper beim Auftraggeber im Einsatz war, stellte sich heraus, dass das justieren der Lichtschranken gerade bei Sonnenschein eine mühselige Unterfangen darstellt.

Außerdem hängt die Genauigkeit der Erfassung hierbei auch immer von der Justierung der Lichtschranken ab. Da je nach Höhe und Winkel der Start- und Ziellichtschranke, diese bei verschieden Fahrzeugen unterschiedlich ausgelöst werden können. Diese Fehler bewegen sich zwar meist nur in Millisekunden Bereichen, können aber durchaus die Wertungsergebnisse beeinflussen.

So wurde die Idee geboren, einen alternative Messmethode zu testen. Es sollte eine Druckschlauchmessung aufgebaut werden, die quer über die Fahrbahn gelegt werden kann, umso eine Messmethode zu erhalten, die direkt an den Rädern des Fahrzeugs misst. Also Unabhängig von der Form und Bauart der Karosserie.

Es wurde ein PVC-Schlauch, der an einem Ende geschlossen war, an eine Handelsübliche Druckmessung angeschlossen und der Potentialfreie Ausgangskontakt mit dem entsprechenden Initiator Eingang des Timekeeper Moduls verbunden.

Die ersten Tests lieferten bereits sehr viel versprechend Ergebnisse und bewiesen, dass der grundsätzliche Testaufbau funktionierte.

Nach dem die ersten Erfahrungen mit verschiedene Schlauchmaterialien, Druckaufnehmer und den in der Praxis auftretenden Störeinflüssen gesammelt wurden. War schnell klar, dass eine handelsübliche Druckmessung die Anforderungen an diese Aufgabe nur bedingt erfüllen kann.

Der Nachteil eines solchen Messverfahrens ist eine vergleichsweise ungenaue Messung, da die Kunststoffschläuche ein gewisses Eigenleben haben, das zum Beispiel zu temperaturabhängigen Kriecheffekten und Offsetproblemen führt.

Es musste also eine speziell auf diese Art der Anwendung zuggeschnittene Lösung entwickelt werden.

Spezielle Funktion für die Schlauchdruckmessung

Das Hauptproblem stellt nicht die Messung an sich dar, sondern die Umgebungsbedingungen. Den der Druck im inneren des Schlauches ist natürlich in erster Linie abhängig von der Umgebungstemperatur.

Stellen wir uns folgendes vor, der Messaufbau wird am frühen Morgen installiert und getestet. Die Auslöseschwelle beim Überfahren des Schlauchs wird auf ein optimales Auslöseverhalten für die Art und Länge des Schlauchs programmiert.

Der Tag beginnt mit einem relativ kühlen Vormittag, entwickelt sich aber gegen die Mittagszeit zu einem sehr sonnigen Tag.
Am Nachmittag entstehen am Himmel größere vorbeiziehende Wolkenfelder.

So könnte ein normaler Sommer Tag aussehen … was passiert aber nun mit dem Druck im Sensorschlauch?

In der Früh wurde die Messung kalibriert und optimal eingestellt.
Am Vormittag steigt der Druck im Schlauchsensor jedoch stetig an. Im Extremfall sogar bis über die programmierte Auslöseschwelle.

Am Nachmittag wechselt der Druck im Schlauch im Verhältnis der vorbeiziehenden Wolkenfelder hin und her.
All dies hat Einfluss auf das Auslöseverhalten und die Genauigkeit der Messung und kann sogar zu Fehlauslösungen führen.

Genau für diesen Anwendungsfall wurde eine spezielle Zusatzfunktion in diese Druckmessung integriert.

Diese überwacht ständig den Druck im Sensorschlauch, steigt bzw. fällt der Druck (Delta P) über- oder unter einen programmierbaren Schwellwert und bleibt für eine definierbare Zeit (t) außerhalb der definierten Grenze, wird eine (AC) automatische Nullpunkt Kalibration des Relativdruckwertes durchgeführt.

Aufgabenstellung:

Es sollte eine Druckmessung mit einem weiten Eingangsspannungsbereich von 8 – 27V entwickelt werden.
Damit ein Betrieb mit einem Bleiakku (12V KFZ-Batterie), einem externen Netzteil oder eine direkte Versorgung aus dem Timekeeper Modul möglich ist. Dieser wird üblicherweise mit 24V gespeist.

Die Konfiguration der Modulparameter sollte direkt am Pressure Sensor Modul möglich sein. Für die Anzeige sollte ein kleines OLED-Display für die Anzeige der Messwerte und der Menüfunktionen vorhanden sein. Die Bedienung erfolgt dabei über einen Drehwahlschalter bzw. alternativ über einen Taster, der die Navigation und Auswahl der Menü Punkte erlaubt.

Das Modul sollte über drei konfigurierbare, potentialfreie Ausgangskontakte verfügen. Welche das Über- und Unterschreiten einer einstellbaren Druckschwelle, sowie einen Sensorfehler ausgeben können. Für jedes dieser drei Relais kann die Ruhelage NO (normally open) oder NC (normally closed) separat festgelegt werden.

Optional zur Werte- und Fehleranzeige am Sensor Modul, sollten diese Informationen auch über die Blynk App und ein Web Interface zugänglich sein.

Über die integrierte Micro USB-Schnittstelle sollen nach Aktivierung dieser Funktion im Menu, die Messwerte sowie die Statusmeldungen im Textformat ausgegeben werden. Damit diese für eine externe Weiterverarbeitung genutzt werden können.

Bei der Entwicklung der Messung sollte Wert daraufgelegt werden, dass diese sehr vielseitig, auch für beliebige andere Druckmessaufgabe eingesetzt werden kann.
Es sollen zwei verschiedene Messarten möglich sein, Messung des Absoluten Drucks sowie die Messung des Relativen Drucks.

Die Messung des Relativen Drucks sollte auch manuell Kalibriert werden können.

Für den Einsatz in Verbindung mit einer Druckschlauchmessung, muss eine spezielle Funktion implementiert werden, die bei Bedarf einen automatischen Differenzdruckabgleich durchführen kann. Dieser soll immer dann durchgeführt werden, wenn der Druck einen definierbaren Schwellwert (P) für eine definierbare Zeit (t) über- bzw. unterschreitet.

Das Pressure Sensor Modul sollte ein Teilbares System werden, das aus einem wechselbaren Drucksensor, dem eigentlichen Auswertemodul und einem schnell wechselbaren Schlauchsystem besteht.

Auf diese Weis ist es leicht möglich das Sensorsystem je nach Anforderung kundenspezifisch anzupassen.

In einem weiterer Entwicklungsschritt, soll die Firmware um eine eigenständige Zeitnahme Funktionalität erweitert werden.
Die Zeitmessung beginnt mit dem ersten Überfahren des Schlauchsensors und endet mit dem zweiten Überfahren.
Damit die Zeitmessung nicht sofort nach dem Überfahren mir den Hinterreifen wieder beendet wird, soll eine Verzögerungszeit zwischen der Start- und Endzeiterfassung eingegeben werden können, um dies zu verhindern.

Der Drucksensor:

Der verwendete Drucksensor ist ein analog arbeitender Sensor.
Er besitzt ein robustes Edelstahlgehäuse in dem sich ein präziser Druckkeramiksensor befindet. Die Vorverarbeitung des Messwerts übernimmt ein integrierter Mikrocontroller.
Der Sensor besitzt eine lange Lebensdauer bei einer geringen Langzeitdrift.

Die Verbindung zur Auswerteelektronik wird über eine dreipolige wasserdichte PACK-Steckverbindung hergestellt.
Die Versorgungsspannung des Sensors beträgt 5V ± 0,25V
Die Sensoren gibt es mit verschiedenen Druchmessbereichen, die jeweils im Menü des Pressure Sensors ausgewählt werden können.

Sensortypen: 5 psi, 15 psi, 30 psi, 60 psi, 100 psi, 150 psi, 200 psi

Technische Daten der Drucksensoren
Technische Daten der Drucksensoren
Technische-Daten-Drucksensoren.pdf
142.0 KiB
98 Downloads
Details

Der Analogausgang arbeitet in einem Spannungsbereich von 0,5V – 4,5V linear zum Skalendruck. Der Zerstörungsdruck liegt beim 3-fachen Skalendruck.
Da der Sensorwert über ein Analogsignal im Bereich von 0,5V – 4,5V übertragen wird, ist es leicht möglich, beim einem Über- bzw. Unterschreiten dieser Werte, eine Drahtbruch bzw. Kurzschluss Auswertung vorzunehmen.

Farbcode der Sensoranschlussdrähte:

  • Analogausgang 0,5-4,5V                   Grün
  • +5V (VDD)                                                 Schwarz
  • Masse (GND)                                            Rot

Anschlussbelegung Hardware

Anschlussbelegung V1.00

REL. MIN      Potentialfreier Kontakt für eine min. Druck
REL. MAX    Potentialfreier Kontakt für eine max. Druck
REL. ERR      Potentialfreier Kontakt für eine Sensorstörung
SENS.             Sensor analog Eingang max. 0-5V
GND               Ground (Minus)
+5V                 Spannungsversorgung 5V Sensor
+3,3V             Spannungsversorgung 3,3V Sensor
+8-27V-       Spannungsversorgung Pressure Sensor Modul

Versionsverlauf:

Intended:

  • Integration einer direkten Zeitmessung mit Blynk APP und Web-Interface

Released:

  • 03.05.2021: Version X.01 (für alle Hardware Versionen)
    – Ergebnisliste im Webserver
    – Ergebnistabelle im Webserver als CSV exportierbar
    – Anzeige der Ergebnisse in der Blynk App.
    – Konfiguration verschiedener Drucksensoren von 5 psi – 200 psi
    PressureSensor V101
    PressureSensor V101
    PressureSensor_V101.png
    Version: 1.01
    2.9 KiB
    99 Downloads
    Details
  • 15.12.2020: Version 1.00
    – Druckmessung relativ / absolut
    – Autocalibration
    – Sensorfehlererkennung Relaisausgang NC/NO
    – Seriale Ausgabe der Werte über USB,
    – Min/Max Wert Relaisausgänge NC/NO
    – Webbrowser Darstellung
    – Blynk Applikation
PressureSensor V1.00
PressureSensor V1.00
PressureSensor_V100.png
Version: 1.00
10.7 KiB
93 Downloads
Details

Temperatur geführte WLAN Gewächshausantriebssteuerung

Um in einem Gewächshaus eine ideale Umgebungstemperatur für das gedeihen der Pflanzen zu schaffen, besitzen vielen Gewächshäuser ein Klappfenster, das manuell oder Motorisch betrieben je nach Temperatur geöffnet oder geschlossen werden kann.

Dieses Projekt schafft eine Möglichkeit zur kontinuierlichen Überwachung der Temperatur und der Luftfeuchtigkeit im Gewächshaus.
Diese Daten können über eine WLAN-Verbindung und die APP Blynk ausgewertet werden.
Um auf Temperaturschwankungen reagieren zu können besitzt das Modul zwei potentialfreie Relaisschaltausgänge je für AUF und ZU, über die z.B. ein motorischer Stellantrieb angesteuert werden kann, der die Fensterstellung steuert.

Über die Blynk App ist es möglich, nicht nur die Messdaten zu erfassen und zu speichern, das Modul besitzt einen integrierten Dreipunktregler, der mit entsprechender Parametrierung ein automatisches Verstellen des Antriebs ermöglicht.

Zusätzlich können die Sensordaten des Moduls auch über einen Webserver abgerufen werden, den das Modul ebenfalls zur Verfügung stellt.
Somit ist es möglich, über die Eingabe der IP-Adresse des Moduls im Webbrowser ebenso die aktuellen Sensordaten jederzeit abzurufen.

Das Steuermodul besteht im Wesentlichen aus der Grundplatine mit einem ESP8266 (Wemos D1 mini Pro) / 16MBit Mikrokontroller, der Beschaltung für die Spannungsversorgung und der Kommunikationsschnittstelle. Auf die Interne Antenne wurde verzichtet und stattdessen eine Externe Antenne angebracht, da mit dieser eine bessere WLAN-Empfang und damit eine größere Reichweite möglich ist.

Die Erstellung der Software für den Mikrokontroller erfolgt in der Programmiersprache C, das erstmalige Programmieren bzw. Flashen des Mikrokontrollers wurde über die Arduino IDE realisiert.
Für jede weitere Firmware Aktualisierung steht eine Updatefunktion in der APP bzw. im Web Frontend zur Verfügung, die nach der neusten Firmware auf dem Server der Herstellers sucht und diese ggf. installiert.

Die aktuelle im Modul verwendete Firmware Version wird sowohl in der APP als auch im Web Frontend angezeigt.

Hierbei ist zu beachten, dass auch immer die passende Blynk Applet Version auf dem Smartphone oder Tablett installiert werden muss, da dies ansonsten zu Fehlfunktionen führen kann!

Die Erfassung der Messdaten übernimmt ein Sensor vom Typ DHT 22 der die relative Luftfeuchtigkeit und die Temperatur misst.

Blynk APP „Applet“

Für die Firmware Version V1.00

Technische Beschreibung

Schaltplan

Timekeeper, Zeitmessung mit Großdisplay und App

Technische Beachreibungen Timekeeper Alle Versionen
Technische Beachreibungen Timekeeper Alle Versionen
Technische-Beachreibungen-Timekeeper-alle-Versionen.zip
15.4 MiB
85 Downloads
Details

Produktentwicklung Timekeeper in unserem Web Shop ansehen
Timekeeper

Key Features

  • Weiter Eingangsspannungsbereich von 8 – 27V,  12V Batteriebetrieb möglich
  • Konfiguration aller Modulparameter direkt am Timekeeper möglich.
  • Großes 1024 Pixel LED DOT-Matrix Display für die Anzeige der gemessenen Zeiten
  • Konfiguration über Taster am Modul oder die Blynk APP
  • Konfigurierbare Ruhelagen NO (normally open), NC (normally closed) der angeschlossenen Sensoren
  • Zeitanzeige am Display, über die Blynk App oder das Web-Interface
  • Für viele verschieden Messverfahren einsetzbar (Lichtschranken, Druckschlauchmessung oder Potentialfreie Eingangskontakte
  • Viele verschieden Messmodis auswählbar (Einzelzeiten, Rundenzeiten, Zwischenzeit, EinzelInitiator Messung uvm.)
  • Unterdrückung von mehrfach Auslösungen beim Überfahren bei Schlauchmessverfahren.
  • OTA Firmware Update
  • Time Display Funktion für Alge Comet Zeitmessmodule (ab Version VX.04)
  • Einstellung der Display Helligkeit für Energieeinsparung z.B. bei Battereibetrieb (ab Version VX.05)
  • Zeitdifferenz korrekt (ab Hardware Version 2, Software Version 1.27)

Allgemeines

Die hier beschriebene Zeitmessung „Timekeeper“ entstand auf Anfrage für eine Zeitmessung zu Trainingszwecke für eine Gleichmäßigkeitsprüfung, wie sie bei Oldtimer Rennen zur Wertung durchgeführt wird.

Aufgabenstellung:

Beim Durch- bzw. Überfahren eines Startinitiators sollte eine neue Zeitmessung begonnen werden, diese sollte mit dem Durch- bzw. Überfahren des Zielinitiators enden.
Die Zeitnahme sollte in drei verschiedenen Modi erfolgen können, eine reine Zielzeiterfassung, eine Ziel- und Zwischenzeiterfassung (was einen weiteren Zeitmesseingange für die Zwischenzeit notwendig machte) und die Erfassung von zwei Rundenzeiten (LAP1 und LAP 2).

Die gemessenen Zeiten sollten durch eine große Anzeige, die gut aus dem Fahrzeug, nach Beendigung der Zeitnahme abzulesen wäre. Des Weiteren sollte die Möglichkeit bestehen, die gemessenen Zeiten zusätzlich in einer APP auf dem Smartphon angezeigt zu bekommen.

Eine Webserver Ansicht, die alternativ zur APP Ansicht benutzt werden könnte, wurde ebenfalls angestrebt.

Die Anforderungen wurden in diesem Projekt kurzbeschrieben wie folgt realisiert:
Die gesamte Zeitmessung erhielt ein robustes Aluminium Gehäuse mit einer verspiegelten Plexiglasscheibe, hinter der eine gut lesbare LED DOT Matrix Anzeige angebracht wurde.
Die Auflösung des Displays beträgt 1024 Led Bildpunkte.

Um die drei Initiatoren direkt per M12 Steckverbinder anzuschließen, wurden auf der Rückseite des Gehäuses drei Buchsen angebracht, die einen direkten Anschluss von Industrie Laserlichtschranken (z.B. der Firma Leutze) ermöglichen.
Aus diesem Grund wird das Modul mit einem =24V/2A Stecker Netzteil versorgt, dass sogleich die Versorgungsspannung für die angeschlossenen Initiatoren wie auch der internen Elektronik bereitstellt.

Die Zeiterfassung erfolgt Mikrocontroller gestützt, mit einem ESP8266.
Dieser Baustein bietet alle Voraussetzungen, die für die Realisierung des Projektes und eine Anbindung über ein WIFI Netzwerk notwendig sind.
Die dabei erzielte Messgenauigkeit beträgt +/-1 ms.

Eine Externe Antenne sorgt für eine optimale Reichweite des Moduls.

Um die ermittelten Zeiten direkt auf einem Smartphone anzuzeigen, wurde eine Anbindung an die BLYNK APP realisiert.
Da diese APP ist sowohl für Android als auch für IOS erhältlich ist. Sie überzeugte durch ihr offenes und flexibles Konzept und ist zudem eine sehr kostengünstige Lösung für den Endkunden.

Durch den Kauf von zusätzlicher Energie, kann die App leicht und flexibel um weitere Anzeigen und Funktionen erweitert werden.

Ist keine Internetverbindung möglich oder vorhanden, arbeitet das Timekeeper Modul somit nach der Initialisierung im Standalone Modus, die ermittelten Zeiten werden auf dem Display angezeigt.

Zusätzlich können die gemessenen Zeitinformation in diesem Betreibsmodus aber auch über ein integriertes Webinterface abgerufen und angezeigt werden. Hierfür wird ein interner Access Point geöffnet, mit dem man sein Smartphon verbinden kann, um auf die ermittelten Zeiten zuzugreifen.

Ist eine Anbindung an ein lokales WLAN und somit eine Internet Verbindung vorhanden, bietet das Modul weitere Optionen für die Bedienung und die Zeitanzeige.

Es ist dann z.B. möglich die neusten Firmware Updates vom Webserver des Herstellers direkt in das Modul zu laden und zu installieren.

Ein integrierter NTP-Zeitservice stellt dann die aktuelle Uhrzeit und das Datum zur Verfügung. Wird mit dem Modul länger als 90 Sekunden keine neue Zeitmessung mehr durchgeführt wird diese dann automatisch auf dem Display angezeigt.

Die Auswahl verschiedener Funktionen erfolgt über dem MODE-Taster auf der Rückseite des Moduls. Damit kann ein Menü aufgerufen werden, um die Funktionsweis des Moduls zu konfigurieren.

Die M12 Buchsenanschlüsse sind kompatible mit der von uns empfohlenen Leuze Laserlichtschranken von Typ PRKL 25 4.1 200-S12 und können somit direkt angeschlossen und betrieben werden.

Steckerbelegung Lichtschranken:

Draufsicht M12 Buchse:



Blynk Applikation:

Webansicht:

Kundenreferenzen des Auftraggebers:

Folgende Links wurden uns vom Kunden, der die Entwicklung des Timekeeprer bei und beauftragt hat zur Verfügung gestellt.

Versionsverlauf:


Intended:

  • Keine neuen Anforderungen

Released:

27.06.2022 HW Versionen 2, Firmware Version 1.27 RC
Alle Einstellungen, die ursprünglich über die BLYNK App vorgenommen werden konnten, wurden in dieser Version nun in die Weboberfläche integriert. Da der Anbieter der BLYNK App die  Unterstützung seines Dienstes bis Ende 2022 abgekündigt hat!
Desweiteren wurden die Settings um ein Eingabefeld zur  Zeitdifferenz korrekt erweitert, diese erlaubt einen Abgleich mit anderen Messsystemen.

Ältere Versionen:
Aufgrund einer Server Umstellung unseres Providers, können OTA-Updates nun nur noch ab Version 1.x6 durchgeführt werden!
Für eine Firmware Update Ihrer älteren Timekepper Version, muss Ihr Gerät zu uns eingeschkickt werden!
Wünschen Sie ein Update, fordern Sie bitte ein Angebot bei uns an.

  • 18.04.2021: Alle HW Versionen, Firmware Version 03
  • Einstellen der Display Helligkeit.
    Timekeeper-BLYNK-Token V.05
    Timekeeper-BLYNK-Token V.05
    Timekeeper-BLYNK-Token-V1.05.png
    Version: V1.05
    2.9 KiB
    23 Downloads
    Details
  • – Überarbeitung der Interrupt Routiene bei der Zeiterfassung für
    eine höhere Genauigkeit.
    – Neuen Menüpunkt zum abschalten der WIFI Verbindung (Zeiteinsparung beim Starten, wenn kein WIFI verfügbar).
    – Anzeige Fortschrittsanzeige während deines Firmwareupdates.
    – Verbesserung der Systemsabilität.
    – Geänderte Hardware bei den DOT Matrix Displays von Maxim, unterscheidung über die Hardware Version des Timekeeper Moduls bei OTA-Update
    Timekeeper-BLYNK-Token V.03
    Timekeeper-BLYNK-Token V.03
    Timekeeper-BLYNK-Token-V.03.png
    Version: V.03
    2.9 KiB
    83 Downloads
    Details


  • 15.12.2020: Version 1.02
    – Neue „Hold Ini“ Zeitnahmefunktion.
       Misst die Zeitdauer, die der Initiator aktiv war.
    – Eine Änderung der Zeitnahmemethode direkt am Timekeeper
       wird nun auch rückwärts in der Blynk App Blynk App
       aktualisiert.
    – Wenn kein NTP Zeitserver Server erreichbar ist, wird die
       Uhrzeit / Datum Anzeige am Timekeeper Modul abschalten.
    – Erweiterte Webdarstellung, Listenansicht mit bis zu zwanzig
       Einträge und einem CSV Export Funktion.
    Timekeeper-BLYNK-Token-V1.02
    Timekeeper-BLYNK-Token-V1.02
    Timekeeper-BLYNK-Token-V1.02.png
    2.9 KiB
    88 Downloads
    Details
  • 08.05.2019: Version 1.01
    „Single Ini“ Zeitnahmefunktion mit nur einem Initiator, Trenddarstellung der Zeitdifferenz und Umgestaltung der Bedienelemente.
    Erweiterung der Blynk App um ein Eingabefeld für die Entfernung zwischen dem Start- und Ziel Initiator sowie die Integration einer Anzeige der daraus berechneten Geschwindigkeit.
    Timekeeper BLYNK Token V1.01
    Timekeeper BLYNK Token V1.01
    Timekeeper-BLYNK-Token-V1.01.png
    Version: 1.01
    39.9 KiB
    686 Downloads
    Details
  • 20.04.2019: Version 1.00
    Timekeeper finale Version 1.00, Firware released.
    Timekeeper BLYNK Token V1.00
    Timekeeper BLYNK Token V1.00
    Timekeeper-BLYNK-Token-V1.00.png
    Version: 1.00
    10.7 KiB
    533 Downloads
    Details

Dash Button Bestellsystem

Was ist ein Dash Button?

In diesem Projekt entsteht eine Batterie betriebener WLAN Dash Button in robuster Ausführung.
Die Elektronik soll in einem Gehäuse aus Metall untergebracht werden und eine Schutzart von IP64 erfüllen (Schutz gegen Spritzwasser und Staub).

Ein Dash Button ist eine kleine Mikrocontroller gestützte Schaltung, die bei Anforderung mit einem lokalen WLAN Netzwerk eine Verbindung herstellen kann, um so Daten an einen beliebigen Server zu senden.

Um einen Dash Button in ein bestehendes WLAN Netzwerk zu integrieren, startet der Dash Button im AP-Modus, nach dem Verbinden z.B. mit einem Smartphone oder Laptop, wird automatisch ein Captive Portal auf dem Endgerät geöffnet.

Hier können anschließend folgende Credentials definiert werden:

  • SSID des lokalen WLAN Netzwerks
  • Passwort des lokalen WLAN Netzwerks
  • Hostname des Ziel-Servers
  • URL
  • Dash Token, ein ein-eindeutiger Schlüssel für die Aktion die der Dash Button auslösen soll

Aufbau der Hardware

Der Dash Button soll unabhängig von einer externen Energieversorgung arbeiten können. Das bedeutet, dass die Energieversorgung mit Batterien realisiert wird, die im Gehäuse untergebracht werden.

Prototyp Dash Button von oben

Prototyp Dash Button von unten

Prototyp eines DashButtons im Metallgehäuse, zum Testen der Feldstärke mit einer ext. Antenne.

Deep Sleep Modus

Softwaretechnisch wird hierfür die sogenannte Deepsleep Funktion des Mikrocontrollers verwendet. In diesem Modus hat die Schaltung eine Stromaufnahme <70uA, was eine lange Lebensdauer der Batterien im Standby garantiert.

Nach Herstellerangaben, liegt der Deepsleep Ruhestrom bei ca. 10uA. Gemessen wurde beim Dashbutton jedoch eine Ruhestromaufnahme von ca. 60 uA. Dies muss jedoch noch genauer untersucht werden, da hier eine Messfehlertoleranz des Multimeters anzunehmen ist.

Parameter Typische Stromaufnahme Einheit
Tx 802.11b, CCK 11Mbps, Pout=+17dBm 170 mA
Tx 802.11g, OFDM 54Mbps,, Pout=+15dBm 140 mA
Tx 802.11n, MCS7, Pout=+13dBm 120 mA
Rx 802.11b 1024 byte packet lenght, -80dBm 50 mA
Rx 802.11g 1024 byte packet lenght, -70dBm 56 mA
Rx 802.11n 1024 byte packet lenght, -65dBm 56 mA
Modem-Sleep 15 mA
Light-Sleep 0,5 mA
Power save mode DTIM 1 1,2 mA
Power save mode DTIM 3 0,9 mA
Deep-Sleep 10 uA
Power OFF 0.5 uA

Eine Standard ESP-07 enthält einen Flash RAM von 1M, für die Programmierung wird ein SPIFFS von 64 K voreingestellt.
Direkt auf dem Modul befinden sich zwei LED’s , die rote LED ist direkt mit der Versorgungsspannung verbunden. Diese LED verursacht auch im Deepsleep Modus einen schadhaften Ruhestrom von ca. 15 mA und muss deshalb entfernt werden.
Die blaue LED ist mit TxD verbunden und zeigt die Aktivität an diesem Pin an.

Änderung des Energieversorgungsskonzeptes

Bei den Tests mit verschiedenen Primärquellen hat sich gezeigt, das mit dem ersten Layoutentwurf immer nur ein relativ kleiner Teil der zu Verfügungstehenden Kapazitäten entnommen werden kann. Deshalb wird nun in einer überarabeitenen Hardware Revision ein StepUp Booster vom Typ   NCP1402SN33T1 eingesetzt.

Dieser Baustein hat eine sehr niedrige Anlaufspannung von ca. 0.8V. Werden zwei AA-Battereien in Reihe betrieben, kann jede Zelle bis zu einer Spannung von 0.4V entladen werden, was knapp 90% der Gesamtkapazität der Zellen entspricht.

Der Baustein hat einen sehr niedrige Standby Stromaufnahme von nur 10uA und er stellt am Ausgang einen konstante Spannung von 3.3V zur Verfügung.

Das Schaltungsdesigne wird auch dahingehend geändert, dass auf den Standbystrom des NCP1402SN33T1 und den Deep Sleep Modus des ESP6288 verzichtet werden kann, da die Summe der beiden Ruhestromaufnahmen dann doch einen beträchtlichen Anteil von ca. 70 uA aus mahen würden.

Zu Einsatz kommt ein Mos Fet Transistor, der gleich zwei Aufgaben erfüllt. Zum einen dient er dem Verpolungsschutz, wenn die Batteriene versehentlich falsch eingelegt wurden und schützt so die Schaltkreise vor der Zerstörung.
Und zum anderen, wird er als Schalter für die Sapannungsversorgung verwendet.

Mit dem Betätigen des Tasters wird der Mos Fet leitend und stellt die Versorgungsspannung des Schaltkreises zur Verfügung. Ms nach dem starten des ESP 8266 steuert dieser dann übereinen Ausgang den Mos Fet an und verhindert so das sie Versorungsspannung nach dem loslassen des Taster wieder abgeschaltet wird.

Sobald alle nötigen Programmaktionen abgearbeitet wurden, gibt der ESP 8266 den Schaltausgang des Mos Fet’s wieder frei und die Spannungsversorgung wird abgeschaltet.

Batterie Kapazität

Die Richtwerte für Alkalien Batterien schwanken lt. Herstellerangaben in folgenden Bereichen:

AAA 1000  - 1500  mAh
AA  2000  - 3000  mAh
D   12000 - 20000 mAh

Eine Duracell Plus soll lt. Herstellers Angaben bis zu 2.9 Ah haben, was einer Laufzeit im Deepsleep Modus von mehreren Jahren entspräche.

Für Batterietests bietet das Layout unter anderem auch die Möglichkeit den Dash Button mit einer Knopfzelle zu betreiben.
Es hat sich jedoch gezeigt, dass eine Standard LR2032 nicht in Frage kommt, da bei diesem Typ bei einer Pulsbelastung die Spannung kurzfristig auf 2,8V einbricht. Was deutlich außerhalb der Spezifizierten Parameter des ESP8266 liegen würde.

Deshalb wurde für den Test eine Lithium Ionen Zelle z.B. Typ LIR 2032 (35mAh) verwendet. Da diese Typen auch bei einer Pulsbelastung in der für den ESP8266 definierten Spezifikation bleibt.
Der Nachteil dieser kleinen Bauform liegt jedoch in der kurzen Standbyzeit,  die bei rund 60 uA Ruhestromaufnahme gerade mal für ca. 25 Tage reicht.

Bei der Verwendung von zwei in Reihe geschalteten AA-Zink Kohle Batterien ist der Arbeitsspannungsbereich für den Betrieb eines ESP8266 sehr eingeschränkt. Bei neuen Batterien liegt die Spannung bei ca. 3,2 V. Nach einer Entladung von ca. 5% liegt die Spannung nur noch bei 3,0V. Somit erscheint der Einsatz solcher Batterietypen als wenig sinnvoll.

Eine weitere denkbare Option wäre der Verwendung von drei in Reihe geschalteten AA-Zellen, um das Spannungsniveau  in einen besseren Auslastungsbereich zu bekommen. Hier bei müsste dann jedoch wieder ein Spannungsregler eingesetzt werden, der zusätzliche Verluste mit sich bringt, was die Lebensdauer aber bei der verhältnismäßig geringen Einschaltzeit kaum einschränken dürfte.

Typische Kennlienie einer Duracell AA Batterie. (Quelle Duracell Datenblatt)

So wird nun im dritten Anlauf für dieses Projekt angenommen, dass entweder zwei paralell geschaltete LiFEPO4 AA Akkus zum Einsatz kommen oder drei AA-Zellen die in Reihe geschaltet werden. Oder die Dritte Option ein LIPO Akku mit einer Ausgangsspannung von 3.7V.

Die Platine erhält einen 3,3 V low drop Spannungsregler der Firma Mikrochip, vom Typ MIC5219-3.3BM5 LG33 3.3V –40°C to +125°C SOT-23-5.

Dieser Baustein besitzt einen Enable Eingang, der es erlaubt die komplette Schaltung abzuschalten ohne das ein merklicher Ruhestrom fließt.

Durch den Einsatz dieses Reglers kann ein ein Eingangsspannungsbereiche zwischen 3 – 5v abgedeckt werden. Darurch sind alle drei Varianten der oben beschriebenen Spannungsversorgungen möglich.

LiFEPO4 AA Akkus liefern eine Spannung von 3,4 V / 700 mA, was einer Batteriekapazität von 100% entspräche.
Durch eine Parallelschaltung von zwei LiFePO4 Akkus kann somit die Kapazität auf 1400 mAh erhöht werden.

Hierbei läge die Ausnützung der Batteriekapazität bei etwa 60% (800 mAh), im Vergleich zu drei Zink-Kohle Batteriene. Deren Entladeschlussspannung bei 1v liegt, was bei drei in reihe geschaltenenen Zellen ca. 3V entspricht  = minimale Eingangsspannung der EPS lt. Spec.

Es ergäbe sich rein rechnerisch eine Standbybetriebszeit von ca. 1,5 Jahren.

Ein großer Vorteil bei der Verwendung von LiFePO4 Zellen liegt darin, dass die Zellen wiederaufladbar sind und somit viele Male wieder verwendet werden können.
Ein gravierender Nachteil der Parallelschaltung von zwei Zellen liegt jedoch in einer Verpolung.
Wenn die Zellen von nicht fachkundigem Personal gewechselt werden sollen,  kann es durch die Parallelschaltung der beiden Zellen bei einem falschen Einlegen zu einem Kurzschluss kommen, der dann zur thermischen Zerstörung der Akkus und letztendlich des Dashbuttons führen würde.

Um eine lange Lebensdauer von Akkus zu gewährleisten, sind diese unbedingt vor einer Tiefentladung  zu schützen. Deshalb ist in der Firmware des DashButtons ein Schwellwert von 2,9 V programmiert, ab dem sich der Dash Button nicht mehr starten lässt. Die LED geht kurz an, blinkt für 1 Sekunde sehr schnell und geht dann sofort wieder aus!

Laut Herstellerangaben darf sich die Betriebsspannung eines ESP 8266 in einem Bereich von 3,0V – 3,6V bewegen (Typisch 3,3V).
Somit entspräche eine Batteriespannung von 3,0V gleich 0% Batteriekapazität, was einen sofortigen Batteriewechsel nötig machen würde!

Server Software

Die Server Software bietet die Möglichkeit, neben den Nutzinformation (Token) auch Informationen zur aktuellen Batteriespannung, Hard- und Software Version  und eine Statusinformation des DashButtons zu liefern.

Die Betriebsspannung wird mit dem Parameter &vbatt=x.xxx an den Server übergeben.
Er gibt die Batteriespannung in Volt an.

Beispielberechnung für die Batteriekapazität:

Bei Betrieb mit einer Li Fe PO4 Zelle , wird am Messeingang des Mikrocontrollers etwa eine  Betriebsspannung von 3,3V erreicht.
Was in diesem Fall einer prozentualen Batteriekapazität von 100 % entspräche.
Die minimale Betriebsspannung sollte 3,0V nicht unterschreiten, was somit die 0% der Batteriekapazität fest legt.

Im folgenden Beispiel wird angenommen, dass die Batterie noch eine Spannung von 3,15V (50%) liefert:

Y = Eingangsspannung 3,15V
Y0= 3,0 V
Y100= 3,3 V

X= Ergebnis in %
X0 = 0 %
X100 = 100%

X:= ((X100 – X0) * ( Y – Y0 )  /  (Y100 – Y0)) + X0;

        100 * 0.1
Y = ————-  + 0 = 50%
               0.2

Wird der Parameter nicht übergeben, wird der Wert im Server automatisch auf -1 gesetzt. Was soviel bedeutet, dass der Batteriestatus nicht ermittelt werden konnte bzw. nicht bekannt ist.

In der Server Software kann für jeden DashButton der verwendete Batterietyp ausgewählt werden. Somit kann die Berechnung der Batteriekapazität anhand einer hinterlegten Herstellerkennlinie erfolgen, was eine genauere Anzeige der tatsächlichen Kapazität ermöglicht.

Mit diesen Informationen kann in der Serverapplikation ein Mechanismus angestoßen werden, der den Admin rechtzeitig darüber informiert, wann ein Batteriewechsel erforderlich wird.

Das Layout bietet die Möglichkeit, verschieden Batterietypen in verschiedenen Leistungsklassen und Größen zu verwenden.

Externe Antenne

Um eine stabile Funkverbindung etablieren zu können, muss bei der Verwendung eines Metall- bzw. metallisierten Gehäuses eine externe Antenne verwendet werden!

Bei einem Standard ESP-07 Modulen ist bereits ein Anschluss für eine externe Antenne vorhanden. Wird der externe Antennenanschluss verwendet, muss die Verbindung zur internen (aufgelöteten) Antenne unterbrochen werden. Hierfür ist der Null Ohm Wiederstand neben dem Antennenanschluss zu entfernen.

Für die Verwendung einer externen Antenne muss der null Ohm Wiederstand (rotes Quadrat) entfernt werden. Wird das ESP07 Modul mit einer Batterie betrieben muss zusätzlich die Power LED (roter Kreis) entfernt werden, um ein unnötiges entladen der Batterie zu vermeiden.

 

Wurde die interne Antenne entfernt,ist zwingend darauf zu achten, dass das Modul nicht ohne eine angeschlossene externe Antenne betrieben wird. Da dies zur Zerstörung des ESP-Moduls führen kann.

Programmierung

Die Programmierung des Mikrocontrollers erfolgt über einen Programmieranschluss, der auf der Platine vorhanden ist.
Diese Schnittstelle ist notwendig, um erstmalig eine Firmware in den Mikrocontroller laden zu können.

Hierbei ist zu beachten, dass die Lötbrücke J1 die im Bild mit einem Stern gekennzeichnet ist, nicht geschlossen sein darf. Da im Auslieferungsstand der Pin GPIO16 auf low liegt und somit eine Dauer Reset anliegen würde.

Im Programm darf somit der GPIO16 nicht mit pinMode() konfiguriert werden.

Lötbrücke für ein optionales automatisches aktivieren des DashButton nach einer fest definierten Zeitspanne. Sie verbindet den Pin GPIO16 mit dem Eingang RESET.

Funktionsweise des Tasters und der LED

Das Layout bietet je nach Bestückung die Möglichkeit einen Taster und eine LED in SMD Technik oder aber auch bedrahteten Bauelemente zu verwenden. Somit ist es auch möglich andere Bedientasten z.B. mit Kabelanschlüssen ein zu löten.

Befindet sich das Modul im Deepsleep Modus, kann es durch einen Tastendruck aufgeweckt werden.

Je nachdem wie lange der Taster  gedrückt gehalten wir, werden unterschiedliche Funktionen aufgerufen:

  • Drücken bis eine Verbindung ausgebaut wurde  – Test Modus (Status 0).
  • Drücken über einen Zeitraum von 10 Sekunden – WIFI Setup (Status 1).
  • kurzes Drücken des Tasters – löst eine Bestellung aus (Status 2).

Anschließend versucht das Gerät eine Netzwerkverbindung zum lokalen AP zu etablieren, was durch ein langsames blinken der LED signalisiert wird.
Kann keine Verbindung hergestellt werden, beginnt die LED schnell zu blinken und man hat die Möglichkeit für 240 Sekunden eine Verbindung zu diesem Dash Button aufzubauen und die Konfiguration vor zu nehmen.
Erfolgt in dieser Zeit kein Login auf dem Dash Button, wird der Mikrocontroller wieder in den Deepsleep Modus versetzt, um die Batterie nicht unnötig zu strapazieren.

Ist der Verbindungsaufbau zum lokalen WLAN geglückt, wird die Nutzinformation (Dash Token) an den in den Credentials definierten Server verschickt.
Wurde der Empfang der Information vom Server bestätigt, leuchtet die Status LED für drei Sekunden kontinuierlich.
Wird der Empfangs nicht vom Server bestätigt, wird dies durch schnelles Blinken der LED für drei Sekunden angezeigt.
Anschließend wechselt der Mikrocontroller wider in den Deepsleep Modus.

Je nachdem welches Ereignis am Dashbutton ausgelöst wurde, wird eine entsprechende Statusinformation im Parameter &status=x dem HTTP Put Request übergeben. Wird der Parameter nicht mit übergeben, wird der Wert im Server automatisch auf -1 gesetzt, was soviel bedeutet das der Status nicht bekannt ist.

Server Applikation für den DashButton

DashButtonServer
DashButtonServer
DashButtonServer.zip
Version: V 1.0.0.0
7.9 MiB
474 Downloads
Details

Die Serverapplikation kann auch direkt mit dem Webbrowser getestet werden. Hierfür wird in die Adresszeile der folgende Aufruf eingegeben:

http://HOST
/URL?&token=ef98c8246ef0409da5fb3a27afa4ec61
&vbatt=3.12&hv=1.00&sv=1.03&status=1

  • Host:
    Ist die IP-Adresse des Servers z.B. 192.168.1.123
  • URL:
    Ist eine Pfadangabe (optional für den augenblicklichen Stand) soll später der Einordnung der Einträge dienen, z.B. für die Standorte.
  • token:
    Ist ein 32 stelliger ein eindeutiger Schlüssel des betreffenden Dash Buttons.
  • vbatt:
    Gibt die Batteriespannung in Volt an.
  • hv:
    Gibt die aktuelle Hardware Revision des DashButton an.
  • sv:
    Gibt die aktuelle Firmware Version des DashButton an.
  • status:
    Information über den Auslöser des Ereignisses.
    0 – Test (Button wurde kürzer als drei Sekunden gedrückt)
    1 – Settings (Die Einstellungen wurden aufgerufen, durch langes drücken des Tasters)
    2 – Order (Ein Bestellauftrag wurde abgesetzt)
    3 – Für weitere Statusinformationen reserviert
Weitere Ideen:
  • Der Dash Token sollte im Prinzip ein 32 Byte Hashcode sein, der einen Prüfsumme oder einen CRC Check enthält, um die Authentizität des Tokens auf dem Server verifizieren zu können.
  • Es wäre denkbar, dass sich ein Dash Button der längere Zeit nicht betätigt wurde, automatisch aktiviert (z.B. alle 24h) und seinen Batteriestatus an den Server sendet.
    Der Parameter „status“ würde das Ereignis dann als Test identifizieren.
    Hierbei wäre zu bedenken, dass ein zyklisches Verbinden mit dem WLAN und das Senden dieser Statusinformationen die Batterielebensdauer zusätzlich verkürzen würde.